Amorphous Macromers as Potential Organic Matrix in Dental Composites

Main Article Content

Anand V. Susila Venkatesh Balasubramanian

Abstract

Objectives: Assess the thermal and hydrolytic stability of patented macromer- based dental polymer matrices and composites


Methods: Polymer matrices and composites based on a patented material (IP:343192) containing hybrid amorphous macromers co-polymerized with one of the 4 different dimethacrylates was prepared and the thermal and photo-thermal behavior were assessed. Diffusivity resistance and cross-link density of polymers were assessed. Sorption (𝑆(𝑡), 𝑀𝑔%(𝑡) 𝖠 𝑆%(𝑡)and solubility (𝑆𝐿(𝑡) 𝖠 𝑆𝐿%(𝑡) of composites in chloroform (CHCl3), tetrahydrofuran (THF), carbon tetrachloride (CCL) and acetone (Ace) for varying durations (1h, 24h 1mo), and deionized water for 120h were determined.


Results: Dual Tg were noticed for both the matrices and composites; matrices containing BisGMA (G) and UDMA (U) as the dimethacrylate co-polymer showed significantly lower𝑆𝐿(𝑡). Matrix containing TEGDMA (T) as the dimethacrylate co-polymer showed the least 𝑆(𝑡). Matrix containing BisEMA (E) had the highest cross-link density. photo-DSC of composites showed a Degree of Conversion of 97% at lower enthalpies (15-28J/g). None of the composites showed water solubility. All materials showed solubility in acetone with U being the least. Sorption and solubility in other organic solvents was lower and occurred only at longer immersion time.


Conclusions: Amorphous hybrid macromer-based polymer matrices and composites show promising thermal and hydrolytic behavior.

Keywords: dental composite, macromer, thermal stability, glass transition, hydrolytic stability, cross-link density

Article Details

How to Cite
SUSILA, Anand V.; BALASUBRAMANIAN, Venkatesh. Amorphous Macromers as Potential Organic Matrix in Dental Composites. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4254>. Date accessed: 13 may 2024. doi: https://doi.org/10.18103/mra.v11i8.4254.
Section
Research Articles

References

1. Fong H, Dickens S, Flaim G. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dent Mater. 2005;21(6):520-529. doi:10.1016/j.dental.2004.08.003.
2. Lai J, Johnson A, Douglas R. Organosilicon dental composite restoratives based on 1, 3-bis[(p- acryloxymethyl) phenethyl] tetramethyldisiloxane. Dent Mater. 2004; 20: p. 570-578.
3. Asmussen E, Peutzfeldt A. Polymerization contraction of a Silorane-based resin composite and four methacrylate-based composites. J Eur Cells Mater. 2005; 10:Suppl.4: p. 8.
4. Manojlovic D, Radisic M, Vasiljevic T, ZIvkovic S, Lausevik M, Miletic V, et al. Monomer elution from nano-hybrid and ormocer based composites cured with different light sources. Dent Mater. 2011; 27: p. 371-378.
5. Moszner N, Gianasmidis A, Klapdohr S, Fischer U, Rheinberger V. Sol-gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater. 2008; 24: p. 851-856.
6. Ferracane J. Resin composite-state of the art (Review). Dent Mater. 2011; 27: p. 29-38.
7. Moszner N, Salz U. New developments in polymeric dental composites. Prog Pol Sci. 2000; 26: p. 535-576.
8. Susila AV, Balasubramanian V, IIT Madras. Dental Composite Formulations. Indian Patent 343192, India, issued August 3rd 2020.
9. Sirovica S, Guo Y, Guan R, Skoda M, Palin W, Morrella A, et al. Photo-polymerisation variables influence thestructure and subsequent thermal response ofdental resin matrices. Dent Mater. 2020; 36: p. 343-352.
10. Carrioscia J, Lu H, Stansbury J, Bowman C. Thiol-ene oligomers as dental restorative materials. Dent Mater. 2005; 21: p. 1137-1143.
11. Lu H, Carioscia J, Stansbury J, Bowman C. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent Mater. 2005; 21: p. 1129–1136.
12. Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA, Trejo-Carbajal N, Meléndez-Rodríguez M, Herrera-González AM. Preparation and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Dent Mater. 2020;36(4):542-550. doi:10.1016/j.dental.2020.02.005
13. Kim MJ, Kim RJY, Ferracane J, Lee IB. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities. Dent Mater. 2017;33(10):e373-e383. doi:10.1016/j.dental.2017.07.007.
14. Jo SA, Lee CH, Kim MJ, Ferracane J, Lee IB. Effect of pulse-width-modulated LED light on the temperature change of composite in tooth cavities. Dent Mater. 2019;35(4):554-563. doi:10.1016/j.dental.2019.01.009
15. Soares C, Ferreira M, Bicalho A, De Paula Rodrigues M, Braga S, Versluis A. Effect of Light Activation of Pulp-Capping Materials and Resin Composite on Dentin Deformation and the Pulp Temperature Change. Oper Dent. 2018;43(1):71-80. doi:10.2341/16-325-L
16. Eick J. In vitro biocompatibility of oxirane/ polyol dental composites with promising physical properties. Dent Mater. 2002;18(5):413-421. doi:10.1016/S0109-5641(01)00071-9
17. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature Changes in Silorane-, Ormocer-, and Dimethacrylate-Based Composites and Pulp Chamber Roof during Light-Curing. J Esthet Restor Dent. 2009;21(2):122-131. doi:10.1111/j.1708-8240.2009.00244.x
18. Crivello JV, Falk B, Zonca MR. Photoinduced cationic ring-opening frontal polymerizations of oxetanes and oxiranes. J Polym Sci Part Polym Chem. 2004;42(7):1630-1646. doi:10.1002/pola.20012.
19. Palin W, Fleming G, Burke F, Marquis P, Randall R. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dent Mater. 2005;21(9):852-863. doi:10.1016/j.dental.2005.01.004.
20. Hofmann N, Renner J, Hugo B, Klaiber B. Elution of leachable components from resin composites after plasma arc vs. standard or soft-start halogen light irradiation. J Dent. 2002;30(5-6):223-232. doi:10.1016/S0300-5712(02)00022-2.
21. Atai M, Nekoomanesh M, Hashemi S, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater. 2004;20(7):663-668. doi:10.1016/j.dental.2003.08.008.
22. Fugolin AP, De Paula AB, Dobson A, et al. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36(7):884-892. doi:10.1016/j.dental.2020.04.009.
23. Marghalani HY. Sorption and solubility characteristics of self-adhesive resin cements. Dent Mater. 2012;28(10):e187-e198. doi:10.1016/j.dental.2012.04.037.
24. Domingo C, Arcís RW, López-Macipe A, et al. Dental composites reinforced with hydroxyapatite: mechanical behavior and absorption/elution characteristics. J Biomed Mater Res. 2001;56(2):297-305. doi:10.1002/1097-4636(200108)56:2<297::aid-jbm1098>3.0.co;2-s.
25. Yap AUJ, Soh MS, Han TTS, Siow KS. Influence of curing lights and modes on cross-link density of dental composites. Oper Dent. 2004;29(4):410-415.
26. Soh MS, Yap AUJ. Influence of curing modes on crosslink density in polymer structures. J Dent. 2004;32(4):321-326. doi:10.1016/j.jdent.2004.01.012.
27. Da Silva EM, Poskus LT, Guimarães JGA, Barcellos ADAL, Fellows CE. Influence of light polymerization modes on degree of conversion and crosslink density of dental composites. J Mater Sci Mater Med. 2008;19(3):1027-1032. doi:10.1007/s10856-007-3220-5.
28. Alonso RCB, Brandt WC, Souza-Junior EJC, Puppin-Rontani RM, Sinhoreti MAC. Photoinitiator concentration and modulated photoactivation: influence on polymerization characteristics of experimental composites. Appl Adhes Sci. 2014;2(1):10. doi:10.1186/2196-4351-2-10.