Screening technologies for recombinant antibody libraries
Main Article Content
Abstract
Monoclonal antibodies have become increasingly important in research and diagnosis, and therapeutics. Many antibody preparations are on the market, which has grown to an astounding size. In diagnosis, the use of antibodies has helped to enable early diagnoses of a wide variety of illnesses. The ability to establish antibodies to various types of antigens has accelerated proteomics research. The antibodies with higher affinity and specificity are required in each field, but these needs cannot be met with conventional monoclonal production technology, thus necessitating monoclonal antibody production using recombination technology. The use of recombinant technology enables the production of antibodies to the antigens for which antibodies cannot be produced using conventional production technology. In vitro selection techniques enable screening in the environment in which antibodies are used, thus in turn enabling the establishment of antibodies suited to specific uses. In the production of recombinant monoclonal antibodies, it is important to prepare a highly diverse library in order to identify positive clones using screening technology with little background reaction. The present paper explains screening technology in recombinant monoclonal antibody production, demonstrates the problems and issues in production, and discusses the future outlook of this technology.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
Akahori, Y., Kurosawa, G., Sumitomo, M., Morita, M., Muramatsu, C., Eguchi, K., … Kurosawa, Y. (2009). Isolation of antigen/antibody complexes through organic solvent (ICOS) method. Biochemical and Biophysical Research Communications, 378(4), 832–5. doi:10.1016/j.bbrc.2008.11.129
Buhr, D. L., Acca, F. E., Holland, E. G., Johnson, K., Maksymiuk, G. M., Vaill, A., … Kiss, M. M. (2012). Use of micro-emulsion technology for the directed evolution of antibodies. Methods (San Diego, Calif.), 58(1), 28–33. doi:10.1016/j.ymeth.2012.07.007
Chan, C. E. Z., Chan, A. H. Y., Lim, A. P. C., & Hanson, B. J. (2011). Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. Journal of Immunological Methods, 373(1-2), 79–88. doi:10.1016/j.jim.2011.08.005
Chattopadhyay, P. K., Gierahn, T. M., Roederer, M., & Love, J. C. (2014). Single-cell technologies for monitoring immune systems. Nature Immunology, 15(2), 128–35. doi:10.1038/ni.2796
Chen, G., & Sidhu, S. S. (2014). Design and generation of synthetic antibody libraries for phage display. Methods in Molecular Biology (Clifton, N.J.), 1131, 113–31. doi:10.1007/978-1-62703-992-5_8
De Bruyn, M., Bremer, E., & Helfrich, W. (2013). Antibody-based fusion proteins to target death receptors in cancer. Cancer Letters, 332(2), 175–83. doi:10.1016/j.canlet.2010.11.006
Debs, B. E., Utharala, R., Balyasnikova, I. V., Griffiths, A. D., & Merten, C. A. (2012). Functional single-cell hybridoma screening using droplet-based microfluidics. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1204514109
Demarest, S. J., & Glaser, S. M. (2008). Antibody therapeutics, antibody engineering, and the merits of protein stability. Current Opinion in Drug Discovery & Development, 11(5), 675–87. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18729019
Dreher, M. L., Gherardi, E., Skerra, A., & Milstein, C. (1991). Colony assays for antibody fragments expressed in bacteria. Journal of Immunological Methods, 139(2), 197–205. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2045660
Dübel, S. (2007). Recombinant therapeutic antibodies. Applied Microbiology and Biotechnology, 74(4), 723–9. doi:10.1007/s00253-006-0810-y
Feldhaus, M. J., & Siegel, R. W. (2004). Yeast display of antibody fragments: a discovery and characterization platform. Journal of Immunological Methods, 290(1-2), 69–80. doi:10.1016/j.jim.2004.04.009
Geyer, C. R., McCafferty, J., Dübel, S., Bradbury, A. R. M., & Sidhu, S. S. (2012). Recombinant antibodies and in vitro selection technologies. Methods in Molecular Biology (Clifton, N.J.), 901, 11–32. doi:10.1007/978-1-61779-931-0_2
Giordano, R. J., Cardó-Vila, M., Lahdenranta, J., Pasqualini, R., & Arap, W. (2001). Biopanning and rapid analysis of selective interactive ligands. Nature Medicine, 7(11), 1249–53. doi:10.1038/nm1101-1249
Giovannoni, L., Viti, F., Zardi, L., & Neri, D. (2001). Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening. Nucleic Acids Research, 29(5), E27. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=29740&tool=pmcentrez&rendertype=abstract
Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., … Allison, T. J. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. The EMBO Journal, 13(14), 3245–60. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=395221&tool=pmcentrez&rendertype=abstract
Hagemeyer, C. E., von Zur Muhlen, C., von Elverfeldt, D., & Peter, K. (2009). Single-chain antibodies as diagnostic tools and therapeutic agents. Thrombosis and Haemostasis, 101(6), 1012–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19492141
Haque, A., & Tonks, N. K. (2012). The use of phage display to generate conformation-sensor recombinant antibodies. Nature Protocols, 7(12), 2127–43. doi:10.1038/nprot.2012.132
Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23(9), 1126–36. doi:10.1038/nbt1142
Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nature Biotechnology, 23(9), 1105–16. doi:10.1038/nbt1126
Hust, M., Frenzel, A., Schirrmann, T., & Dübel, S. (2014). Selection of recombinant antibodies from antibody gene libraries. Methods in Molecular Biology (Clifton, N.J.), 1101, 305–20. doi:10.1007/978-1-62703-721-1_14
Jäger, V., Büssow, K., Wagner, A., Weber, S., Hust, M., Frenzel, A., & Schirrmann, T. (2013). High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnology, 13, 52. doi:10.1186/1472-6750-13-52
Jostock, T., & Dübel, S. (2005). Screening of molecular repertoires by microbial surface display. Combinatorial Chemistry & High Throughput Screening, 8(2), 127–33. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15777176
Kaiser, P. D., Maier, J., Traenkle, B., Emele, F., & Rothbauer, U. (2014). Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochimica et Biophysica Acta, 1844(11), 1933–1942. doi:10.1016/j.bbapap.2014.04.019
Kato, M., & Hanyu, Y. (2013). Construction of an scFv library by enzymatic assembly of VL and VH genes. Journal of Immunological Methods, 396(1-2), 15–22.
Kato, M., & Hanyu, Y. (2015). Direct cloning from antibody libraries. to be submitted to Journal of Immunological Methods.
Kato, M., Sasamori, E., Chiba, T., & Hanyu, Y. (2011). Cell activation by CpG ODN leads to improved electrofusion in hybridoma production. Journal of Immunological Methods, 373(1-2), 102–110.
Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1172191
Kontermann, R. E. (2010). Alternative antibody formats. Current Opinion in Molecular Therapeutics, 12(2), 176–83. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20373261
McCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 348(6301), 552–4. doi:10.1038/348552a0
Miethe, S., Meyer, T., Wöhl-Bruhn, S., Frenzel, A., Schirrmann, T., Dübel, S., & Hust, M. (2013). Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEXTM bioreactor. Journal of Biotechnology, 163(2), 105–11. doi:10.1016/j.jbiotec.2012.07.011
Morino, K., Katsumi, H., Akahori, Y., Iba, Y., Shinohara, M., Ukai, Y., … Kurosawa, Y. (2001). Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. Journal of Immunological Methods, 257(1-2), 175–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11687251
Müller, D. (2010). scFv by Two-Step Cloning. In R. Kontermann & S. Dübel (Eds.), Antibody Engineering (pp. 55–59). Springer Berlin Heidelberg.
Nelson, A. L. (2010). Antibody fragments: Hope and hype. mAbs. doi:10.4161/mabs.2.1.10786
Nettleship, J. E., Ren, J., Rahman, N., Berrow, N. S., Hatherley, D., Barclay, a N., & Owens, R. J. (2008). A pipeline for the production of antibody fragments for structural studies using transient expression in HEK 293T cells. Protein Expression and Purification, 62(1), 83–9. doi:10.1016/j.pep.2008.06.017
Parmley, S. F., & Smith, G. P. (1988). Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene, 73(2), 305–18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3149606
Persson, M. A., Caothien, R. H., & Burton, D. R. (1991). Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2432–6. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=51246&tool=pmcentrez&rendertype=abstract
Prassler, J., Steidl, S., & Urlinger, S. (2009). In vitro affinity maturation of HuCAL antibodies: complementarity determining region exchange and RapMAT technology. Immunotherapy, 1(4), 571–83. doi:10.2217/imt.09.23
Prassler, J., Thiel, S., Pracht, C., Polzer, A., Peters, S., Bauer, M., … Enzelberger, M. (2011). HuCAL PLATINUM, a Synthetic Fab Library Optimized for Sequence Diversity and Superior Performance in Mammalian Expression Systems. Journal of Molecular Biology, 413(1), 261–278. doi:10.1016/j.jmb.2011.08.012
Rauth, S., Schlapschy, M., & Skerra, A. (2010). Selection of Antibody Fragments by Means of the Filter-Sandwich Colony Screening Assay. In R. Kontermann & S. Dübel (Eds.), Antibody Engineering (pp. 255–266). Springer Berlin Heidelberg.
Reichert, J. M. (2015). Antibodies to watch in 2015. mAbs, 7(1), 1–8. doi:10.4161/19420862.2015.988944
Rothe, C., Urlinger, S., Löhning, C., Prassler, J., Stark, Y., Jäger, U., … Urban, M. (2008). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. Journal of Molecular Biology, 376(4), 1182–200. doi:10.1016/j.jmb.2007.12.018
Schaefer, J. V., Honegger, A., & Plückthun, A. (2010). Construction of scFv Fragments from Hybridoma or Spleen Cells by PCR Assembly. In R. Kontermann & S. Dübel (Eds.), Antibody Engineering (pp. 21–44). Springer Berlin Heidelberg.
Schaefer, J. V., Lindner, P., & Plückthun, A. (2010). Miniantibodies. In R. Kontermann & S. Dübel (Eds.), Antibody Engineering (pp. 85–99). Springer Berlin Heidelberg.
Schaffitzel, C., Hanes, J., Jermutus, L., & Plückthun, A. (1999). Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods, 231(1-2), 119–35. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10648932
Schirrmann, T., Al-Halabi, L., Dübel, S., & Hust, M. (2008). Production systems for recombinant antibodies. Frontiers in Bioscience : A Journal and Virtual Library, 13, 4576–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18508530
Schirrmann, T., Meyer, T., Schütte, M., Frenzel, A., & Hust, M. (2011). Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules (Basel, Switzerland), 16(1), 412–26. doi:10.3390/molecules16010412
Schofield, D. J., Pope, A. R., Clementel, V., Buckell, J., Chapple, S. D., Clarke, K. F., … McCafferty, J. (2007). Application of phage display to high throughput antibody generation and characterization. Genome Biology, 8(11), R254. doi:10.1186/gb-2007-8-11-r254
Skerra, A., Dreher, M. L., & Winter, G. (1991). Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two-membrane system. Analytical Biochemistry, 196(1), 151–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1888028
Steinwand, M., Droste, P., Frenzel, A., Hust, M., Dübel, S., & Schirrmann, T. (2014). The influence of antibody fragment format on phage display based affinity maturation of IgG. mAbs, 6(1), 204–18. doi:10.4161/mabs.27227
Thie, H., Voedisch, B., Dübel, S., Hust, M., & Schirrmann, T. (2009). Affinity maturation by phage display. Methods in Molecular Biology (Clifton, N.J.), 525, 309–22, xv. doi:10.1007/978-1-59745-554-1_16
Weiner, G. J. (2015). Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer, 15(6), 361–370. doi:10.1038/nrc3930