Personalized Immunotherapy of Patients: Defining by Single-cell RNA-seq with Artificial Intelligence

Main Article Content

Biaoru Li, MD, PhD


Immunotherapy, including immune cell therapy and targeted therapy, is gradually developed through the ongoing discovery of molecular compounds or immune cells. Choosing the best one or the best combination of target compounds and immune-cell therapy is a challenge for clinical scientists and clinicians. We have found variable efficacy individually after tumor-infiltrating lymphocyte (TIL) therapy, and now TILs have been discovered in a group of heterogeneous immune cells. To select the best immunotherapy for each patient, we started to study TIL genomics, including single-cell mRNA differential display from TIL published in 2007 and single-cell RNA-seq from TIL published in 2013, set up TIL quantitative network in 2015, researched machine-learning model for immune therapy in 2022. These manual reports single-cell RNA-seq data combined with machine learning to evaluate the optimal compounds and immune cells for individual patients. The machine-learning model, one of artificial intelligence, can estimate targeting genomic variance from single-cell RNA-seq so that they can cover thirteen kinds of immune cell therapies and ongoing FDA-approved targeted therapies such as PD1 inhibitors, PDL1 inhibitors, and CTLA4 inhibitors, as well as other different treatments such as HDACI or DNMT1 inhibitors, FDA-approved drugs. Moreover, also cover Phase-1, Phase-2, Phase-3, and Phase-4 of clinical trials, such as TIL, CAR T-cells, TCR T-cells. Single-cell RNA-seq with an Artificial intelligence estimation system is much better than our published models from microarrays or just cell therapy. The medical goal is to address three issues in clinical immunotherapy: the increase of efficacy; the decrease of adverse effects and the decrease of the cost in clinical applications.

Keywords: Artificial intelligence (AI), tumor-infiltrating lymphocytes (TIL), cytokine release syndrome (CRS), chimeric antigen receptor T-cells (CAR T-cell), T-cell receptor T-cell (TCR), natural killer cell (NK), natural killer T-cell (NKT), specific T-cells, PD-1 inhibitor, CTLA4 inhibitor, single-cell genomic analysis, single-cell RNA-seq, personalized immunotherapy

Article Details

How to Cite
LI, Biaoru. Personalized Immunotherapy of Patients: Defining by Single-cell RNA-seq with Artificial Intelligence. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <>. Date accessed: 02 oct. 2023. doi:
Research Articles


[1] Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (1986) 233:(4770):1318–21. doi: 10.1126/science.3489291
[2] Kawakami Y, Nishimura MI, Restifo NP, Topalian SL, O'Neil BH, Shilyansky J, et al. T-Cell recognition of human melanoma antigens. J Immunother Emphasis Tumor Immunol (1993) 14(2):88–93. doi: 10.1097/00002371-199308000-00002
[3] Weaver CH. Tumor-infiltrating lymphocyte therapy for melanoma Available at:
[4] Li B, Tong SQ, Zhang XH, Lu J, Gu QL, Lu DY. A new experimental and clinical approach of combining usage of highly active tumor-infiltrating lymphocytes and highly sensitive antitumor drugs for the advanced malignant tumor. Chin Med J (English). (1994) 107(11):803-7. PMID: 7867384
[5] Lu J, Li B, Hua ZD, Zhu YM, Tong SQ. Research on TIL yield and vitality of different materials. Immunological Journal (Chinese) (1995) 11(3):182-184.
[6] Lu J, Hu L LW, Hua ZD, Li B, Tong SQ; Analysis of the therapeutic effects of different therapeutic approaches for TIL. Chinese Journal Cancer Biotherapy (Chinese) (1996) 3(2):127-129.
[7] Gu QL, Lin YZ, Yin HR, Li B, Zhu YM, Hu BY. Preliminary study on cryopreservation of tumor infiltrating lymphocytes. Journal of Immunology (Chinese) (1995) 04:251-252.
[8] Hua ZD; Lu J, Li HF, Li B, Zhu YM, Tong SQ. Clinical study of tumor infiltrating lymphocytes in ovarian cancer. Chinese Journal of Obstetrics and Gynecology (Chinese) (1996) 31(9):55-57.
[9] Lu J, Li B, Hua ZD, Zhu YM, Tong SQ. Research on TIL yield and vitality of different materials. Journal of Immunology (Chinese) (1995) 11(3): 182-185.
[10] Cai XM, Lu J, Hua ZD, Li B, Tong SQ. Clinical Application of TIL from Different Sources. Journal of Immunology (Chinese) (1996) 12(4):251-254.
[11] Sermer D, Brentjens R. CAR T-cell therapy: Full speed ahead. Hematol Oncol. (2019) 37(1):95-100. doi:10.1002/hon.2591.
[12] Pehlivan KC, Duncan BB, Lee DW. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr Hematol Malig Rep. (2018) 13(5):396-406. doi: 10.1007/s11899-018-0470-x.
[13] Yan X, Liu P, Li D, Hu R, Tao M, Zhu S, Wu W, Yang M, Qu X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int Immunopharmacol. (2022) 113(Pt A):109383. doi: 10.1016/j.intimp.2022.109383. Epub 2022 Oct 28.
[14] Li H, Fu Q, Muluh TA, Shinge SAU, Fu S, Wu J. The Application of Nanotechnology in Immunotherapy based Combinations for Cancer Treatment. Recent Pat Anticancer Drug Discov. (2023) 18(1):53-65. doi: 10.2174/1574892817666220308090954.
[15] Fathi M, Razavi SM, Sojoodi M, Ahmadi A, Ebrahimi F, Namdar A, Hojjat-Farsangi M, Gholamin S, Jadidi-Niaragh F. Targeting the CTLA-4/B7 axes in glioblastoma: preclinical evidence and clinical interventions. Expert Opin Ther Targets. (2022) 26(11):949-961. doi:10.1080/14728222.2022.2160703. Epub 2022 Dec 28.
[16] Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother. (2023) 164:114954. doi: 10.1016/j.biopha.2023.114954. Epub 2023 May 29.
[17] Jess J, Yates B, Dulau-Florea A, Parker K, Inglefield J, Lichtenstein D, Schischlik F, Ongkeko M, Wang Y, Shahani S, Cullinane A, Smith H, Kane E, Little L, Chen D, Fry TJ, Shalabi H, Wang HW, Satpathy A, Lozier J, Shah NN.CD22 CAR T-cell associated hematologic toxicities, endothelial activation and relationship to neurotoxicity. J Immunother Cancer. (2023) 11(6):e005898. doi: 10.1136/jitc-2022-005898.
[18] Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol. (2023) 25:14:1190379. doi: 10.3389/fimmu.2023.1190379. eCollection 2023.
[19] Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Massoco CO, Kfoury Junior JR IDO blockade negatively regulates the CTLA-4 signaling in breast cancer cells. Immunol Res. (2023) doi: 10.1007/s12026-023-09378-0.
[20] Want MY, Bashir Z, Najar RA. T cell Based Immunotherapy for Cancer: Approaches and Strategies. Vaccines (Basel). (2023) 11(4):835. doi:10.3390/vaccines11040835.
[21] Petrou P. Is it a chimera? A systematic review of the economic evaluations of CAR-T cell therapy- an update. Expert Rev Pharmacoecon Outcomes Res. (2023): 23(6):625-650. doi:10.1080/14737167.2023.2214731. Epub 2023 Jun 19.
[22] Li B. (2020) Biobank for Personalized Immunotherapy. Chapter 13: 224-254. Li B, Li S and Larson A. Personalized Immunotherapy for Tumor Diseases and Beyond. Bentham Science Publishers; 2020. 284.
[23] Zhang W, Ding JQ, Qu Y, Hu HL, Lin MH, Datta A, Larson A, Liu G, and Li B. Genomic expression analysis of quiescent CD8 T-cells from tumor-infiltrating lymphocytes of in vivo liver tumor by single-cell mRNA differential display, Immunology (2009) 127 (1):83-90. doi:10.1111/j.1365-2567.2008.02926.x.
[24] Xu YB, Hu HL, Zheng J and Li B. Feasibility of whole RNA sequencing from single-TIL cell mRNA amplification. Genetics of Research International (2013) 4:1. doi:10.1155/2013/724124.
[25] Li B, Liu G, Hu HL, Ding JQ, Zheng J and Tong A. Biomarkers Analysis for Heterogeneous Immune Responses of Quiescent CD8+cells -A Clue for Personalized Immunotherapy. Biomark J. (2016) 1:3. doi:10.21767/2472-1646.100003
[26] LI B and Shen DH. Preliminary Study on the Resting Status of Tumor-infiltrating Lymphocytes. Chinese Microbiology and Immunology (Chinese) (1994) 14(6):399-402. OTHER-ID: 268891.
[27] Konrad MA, Zúñiga-Pflücker JC. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol. (2005) 35(10):3030-42. doi: 10.1002/eji.200526345.
[28] García-Palma L, Horn S, Haag F, Diessenbacher P, Streichert T, Mayr GW, Jücker M. Up-regulation of the T cell quiescence factor KLF2 in a leukaemic T-cell line after expression of the inositol 5'-phosphatase SHIP-1. Br J Haematol. (2005) 131(5):628-31. doi: 10.1111/j.1365-2141.2005.05811.x.
[29] Batlle E, Massagué J. Transforming Growth Factor-beta Signaling in Immunity and Cancer. Immunity. (2019) 50(4):924-940. doi:10.1016/j.immuni.2019.03.024.
[30] Zhang S, Takaku M, Zou L, Gu AD, Chou WC, Zhang G, Wu B, Kong Q, Thomas SY, Serody JS, Chen X, Xu X, Wade PA, Cook DN, Ting J.P.Y., Wan YY. Reversing SKI-SMAD4-mediated suppression is essential for T(H)17 cell differentiation. Nature. (2017) 551(7678):105-109. doi:10.1038/nature24283. Epub 2017 Oct 25.
[31] Evans RL, Wall DW, Platsoucas CD, Siegal FP, Fikrig SM, Testa CM, Good RA. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. (1981) 78(1):544-8. doi: 10.1073/pnas.78.1.544.
[32] Mortazavi A, Leeper Thompson EC, Garcia ST, Myers RM, Wold B. Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res. (2006) 16(10):1208-21. doi:10.1101/gr.4997306. Epub 2006 Sep 8.
[33] Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. (2002) 168(10):5024-31. doi: 10.4049/jimmunol.168.10.5024.
[34] Toor SM, Sasidharan Nair V, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. Semin Cancer Biol. (2019) 1044-1047, 579X (19)30123-3. DOI: 10.1016/j.semcancer.2019.06.021
[35] Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell. (2018) 175(7):1972-1988.e16. DOI: 10.1016/j.cell.2018.11.021
[36] Algarra I, Garrido F, Garcia-Lora AM. MHC heterogeneity and response of metastases to immunotherapy. Cancer Metastasis Rev. (2021) 40(2):501-517. doi:10.1007/s10555-021-09964-4. Epub 2021 Apr 15.
[37] Chen J, Jiang H. Current Challenges and Strategies for Chimeric Antigen Receptor-T-Cell Therapy for Solid Tumors. Crit Rev Immunol. (2021) 41(1):1-12. doi:10.1615/CritRevImmunol.2020036178.
[38] Smet C, Lurquin C, Bruggen P, Plaen E, Brasseur F, Boon T. Sequence and expression pattern of the human MAGE2 gene. Immunogenetics. (1994) 39(2):121-129. DOI: 10.1007/BF00188615
[39] Ugolini A, Nuti M. CD137+ T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel). (2021) 26;13(3):456. doi: 10.3390/cancers13030456.68.
[40] Bakker AB, Schreurs MW, Boer AJD, Kawakami Y, Rosenberg SA, Adema GJ, et al. Melanocyte lineage-specific antigen gpl00 recognized by melanoma derived tumor-infiltrating lymphocytes. J Exp Med. (1994) 179(3):1005-1009. DOI: 10.1084/jem.179.3.1005
[41] Ding JQ, Qian GQ, Chen SS, Li B (2020). Gene Therapy and genomic editing-Development of Adoptive T-cell Immunotherapy. Chapter 10. 160-174. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[42] Penter L, Dietze K, Ritter J, Lammoglia Cobo MF, Garmshausen J, Aigner et al. Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology. (2019) 8(6):e1586409. doi:10.1080/2162402X.2019.1586409. eCollection 2019.
[43] LH Yan, WH Jiang. (2020). MHC and Cancer Immunotherapy. Chapter 1 1-19. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers. Singapore.
[44] S Li, S Perabekam, E Devemy, Li B (2020). Genetically Modified T-cells Affinity to Tumor Cells-Development of Adoptive T-cell Immunotherapy. Chapter 11. 174-196. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers. Singapore.
[45] Torcellan T, Hampton HR, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. (2017) 114(22):5677-5682. doi: 10.1073/pnas.1618446114. Epub 2017.
[46] Bai XF, Gao JX, Liu J, Wen J, Zheng P, Liu Y. On the site and mode of antigen presentation for the initiation of clonal expansion of CD8 T cells specific for a natural tumor antigen. Cancer Res. (2001) 61(18):6860-7.
[47] Kim ST, Jeong H, Woo OH, Seo JH, Kim A, Lee ES, et al. Tumor infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol (2013) 36:224–31. DOI: 10.1097/COC.0b013e3182467d90
[48] Kmiecik J, Poli A, Brons NH,Waha A, Eide GE, Enger PO, et al. Elevated CD3þ and CD8þ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol (2013) 264:71–83. DOI: 10.1016/j.jneuroim.2013.08.013
[49] Bellone M, Calcinotto A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol (2013) 3:231. DOI: 10.3389/fonc.2013.00231
[50] Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med (2012) 366:2443–54. DOI: 10.1056/NEJMoa1200690
[51] Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med (2010) 363:711–23. DOI: 10.1056/NEJMoa1003466
[52] Li B, Tong SQ, Hu BY, Zhu YM, Zhang XH, Wu JH, Lu J, Lu DY. Study on the influence of enzymatic digestion upon tumor-infiltrating lymphocytes. Journal of experimental biology (Chinese) (1994) 27(1): 103-107. EID: 2-s2.0-0028391056
[53] Li B. Clinical Genomic Analysis and Diagnosis--Genomic Analysis Ex Vivo, in Vitro and in Silico. Clinical Medicine and Diagnostics. (2012) 2(4):37-44. doi:10.5923/j.cmd.20120204.04.
[54] Li B, Xu W, Qian GX, Zhang XH, Dong SQ, Chen SS, Methodology of TNF gene transduction of tumor infiltrating lymphocytes, ACTA UNIVERSITATIS MEDICINALIS SECONDAE SHANGHAI (Chinese) (1995) 15(3): 185-189.
[55] DYL, Li B, Tong SQ, Zhang ZH, YM Zhu, BY Wu.(2020). Development of Adoptive T-cell Immunotherapy -Future of Personalized Immunotherapy. Chapter 9 126-145. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers Singapore.
[56] Huang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT, Lyu PC, Wu CL, Lu YC, Lin ST, Lin CW, Lai CH, Chang HT, Chou HC, Chan HL. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci. (2010) 17(1):36. doi: 10.1186/1423-0127-17-36.
[57] Möller P, Wittig B, Schadendorf D. Intratumoral adoptive immunotherapy with tumor infiltrating lymphocytes (TIL) in a melanoma patient leading to regression of local tumor mass. A case report. Anticancer Res. (1998) 18(2B):1237-41.
[58] Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M, Gudeman S, Varia MA. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol. (1999) 45(2):141-57. doi: 10.1023/a:1006293606710.
[59] Sarnaik AA, Hamid O, Khushalani NI, Lewis KD, Medina T, Kluger HM, et al. Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma. J Clin Oncol. (2021) 39(24):2656-2666. doi: 10.1200/JCO.21.00612. Epub 2021 May 12.
[60] Trembath DG, Davis ES, Rao S, Bradler E, Saada AF, Midkiff BR, Snavely AC, Ewend MG, Collichio FA, Lee CB, Karachaliou GS, Ayvali F, Ollila DW, Krauze MT, Kirkwood JM, Vincent BG, Nikolaishvilli-Feinberg N, Moschos SJ. Brain Tumor Microenvironment and Angiogenesis in Melanoma Brain Metastases. Front Oncol. (2021) 10:604213. doi: 10.3389/fonc.2020.604213. eCollection 2020.
[61] Li B. A strategy to identify genomic expression profiles at single-T-cell level and a small number of cells (review paper). Journal of Biotechnology (2005) 71-82. DOI: 10.2225/vol8-issue1-fulltext-3
[62] Li B, Perabekam S, Liu G, Yin M, Song S, Larson A. Experimental and bioinformatics comparison of gene expression between T cells from TIL of liver cancer and T Cells From UniGene. J Gastroenterol (2002) 37(4):275-82. doi: 10.1007/s005350200035.
[63] LI B. Identification of mRNAs expressed in tumor-infiltrating lymphocytes by A strategy for rapid and high throughput screening. GENE (2000) 255: 273-279. doi: 10.1016/s0378-1119(00)00330-9
[64] Li B. Breakthrough of 2015-Personalized immunotherapy. iMedPub Journals (2015) 1(4):1-2.
[65] Li B, Li S and Larson A. (2020) Personalized Immunotherapy for Tumor Diseases and Beyond. Bentham Science Publishers; 2020. 284.
[66] Li B, Ding J, Larson A, Song S. Tumor tissue recycling--a new combination treatment for solid tumors: experimental and preliminary clinical research. In Vivo. 1999 Sep-Oct;13(5):433-8.PMID: 10654199
[67] Li B, Zhang X, Zheng J. Single-cell next-generation sequencing and its applications in cancer biology. Next Generation Sequencing in Cancer Research, Volume 2: From Basepairs to Bedsides 2015 | Book Part of DOI: 10.1007/978-3-319-15811-2_1 and EID: 2-s2.0-84943635279
[68] Wang ZH, Hu HL, Zheng J and Li B. Gene Expression and Pathway Analysis of Quiescent CD8+ T Cells from Liver Cancer, Liver Sinusoid and Peripheral Blood - Study on Toxicogenomic and Prevention Targeting, BIBE (2011) 72-76. DOI: 10.1109/BIBE.2011.18
[69] Li B, Liu G and Zheng J. (2020). System Modeling of T-cell Function Development of Adoptive T-cell Immunotherapy. Chapter 12 197-223. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[70] Ying XN and Li B. Machine-learning Modeling for Personalized Immunotherapy-An Evaluation Module BJSTR. (2022) 47(2): 38211-3816. DOI:10.26717/BJSTR.2022.47.007462
[71] Li B, Hu HL, Ding JQ, Yan D and Yang LM. Functional Cell-proliferation and Differentiation by System Modeling for cell therapy. IJLSRST 2015. 1-11.
[72] Zhang W, Yan Q, Lin MH, Datta A, Liu G and Li B. (2020). Immune cells signaling, Chapter-2 20-42. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[73] Jiang LH and Li B, (2020). Immunoassay of Personalized Immunotherapy (2020) Chapter 3 43-56. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[74] Ying XN, Luo H, Zhang YF, Lu J, Li WQ, Li B. Pathway-Based Approaches for Analysis of RNA-seq with SNPs-A Case Report Without Discovering Targeting Drugs for Metastatic Lung Cancer. Journal of Applied Medical Sciences. (2019) 7(2) 447-450- DOI: 10.36347/sjams.2019.v07i02.006
[75] Ding JQ, Qian GX, Li B, Xu W, Zhu YM, Hu L, Hu BY, Zhang TF, Zhang XH, Xu RT, Tong SQ, Xu WZ, Lu DY, Chen SS. A preliminary study of tumor necrosis factor gene transduction of tumor infiltrating lymphocytes Application; Chinese Journal of Cancer Biotherapy (Chinese) 1995; 1:11-15.
[76] Lu J, Cheng SJ, Li B. Pathway-Based Approaches for Analysis of Genome-Wide Association Studies -A Case Report for Metastatic Small Cell Lung Cancer International Journal of Hematology and Therapy (2007)
[77] Hu BC, Li GW, Cheng W, Shen JK, Lin D, Li B. Clinical application of infiltrating lymphocytes in malignant brain tumors, Journal of Immunology (Chinese), 1997; 2:1-2.
[78] HS Xiao, Gao Y, Li S, Zhang XN, Han JS and Li B. A Case Report of Personalized Chemotherapy for Metastatic Cardiac Sarcoma. iMedPub Journals (2015) 1:1-6
[79] Liu G, Jie Zheng, Li B. (2020). Bioinformatics of T-cell and primary tumor cells. Chapter 8 118-136. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[80] Tan S and Zhu X. (2020). Molecular Targeting Checkpoint in Cancer. Chapter 5 70-89. Personalized Immunotherapy for Tumor Diseases and Beyond (Book) Bentham Science Publishers.
[81] Hu HL, Zhang QH, Li S, Zhang XN, Han JS, Xiao HS, Yan X, Zheng J, Li B, A Therapeutic Targeting Identification from Microarray Data and Quantitative Network Analysis. Journal of Science and Technology. (2015) 3 ID 101114-101124. doi:10.11131/2015/101114
[82] Li B. Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors? Front Immunol. (2022) 21; 13:973881. doi:10.3389/fimmu.2022.973881. eCollection 2022.