COVID-19 Mortality Is Attenuated at High Tropical and Subtropical Altitude: An Observational Study of a Database Covering Five Latin American Countries Less death from COVID-19 at high altitude
Main Article Content
Abstract
The COVID-19 pandemic, caused by the SARS-COV-2 virus, has had devastating consequences worldwide. Remarkably, the incidence, virus transmission capacity, and severity of COVID-19 have been reported to be significantly decreased in high-altitude human populations. The clinical significance of these findings is enormous, as they suggest that permanent inhabitants of high altitudes have developed adaptive protective changes against certain pathologies. However, these observations have been overshadowed by contradictory reports on the COVID-19 mortality rate at high altitude, ascribed to low population densities. These interpretations, however, fail to consider that the environmental conditions of high-altitude regions of the temperate and tropical geographical zones are radically different from each other. Contrary to common thought, the conditions of high-altitude areas of countries within the tropical zone are so benign that they have favored the growth and development of densely populated cities. In this work, we use data from a COVID-19 database covering five Latin American countries in the tropical and subtropical geographic zone that corresponded to the period between the start of the pandemic and the end of 2020, when no vaccine was yet available. Our results reveal that residing above 1,000 m in tropical countries was a protective factor against COVID-19 mortality. Interestingly, this protective effect was independent of population size. The findings presented here, and those from other similar studies, substantiate the need for more research to reveal the secrets of the physiology of permanent high-altitude residents. In conclusion, our findings clearly demonstrate that the high-altitude environment in tropical and subtropical geographic zones significantly contributes to the decreased mortality impact of the SARS-COV-2 virus in high-altitude-exposed populations.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Chennakesavulu K, Reddy GR. The effect of latitude and PM(2.5) on spreading of SARS-CoV-2 in tropical and temperate zone countries. Environ Pollut. Nov 2020;266(Pt 3):115176. doi:10.1016/j.envpol.2020.115176
3. Mani MS. Ecology and biogeography of high altitude insects. vol 4. Springer Science & Business Media; 2013.
4. Sarmiento G. Ecological features of climate in high tropical mountains. High altitude tropical biogeography. 1986;11:45.
5. Arias-Reyes C, Carvajal-Rodriguez F, Poma-Machicao L, et al. Decreased incidence, virus transmission capacity, and severity of COVID-19 at altitude on the American continent. PLoS One. 2021;16(3):e0237294. doi:10.1371/journal.pone.0237294
6. Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude. Proc Natl Acad Sci U S A. May 4 2021;118(18)doi:10.1073/pnas.2102463118
7. Arias-Reyes C, Zubieta-DeUrioste N, Poma-Machicao L, et al. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Resp Physiol and Neurobiol. 2020;in press
8. Cano-Pérez E, Torres-Pacheco J, Fragozo-Ramos MC, García-Díaz G, Montalvo-Varela E, Pozo-Palacios JC. Negative Correlation between Altitude and COVID-19 Pandemic in Colombia: A Preliminary Report. The American Journal of Tropical Medicine and Hygiene. 2020:tpmd201027.
9. Quevedo-Ramirez A, Al-Kassab-Córdova A, Mendez-Guerra C, Cornejo-Venegas G, Alva-Chavez KP. Altitude and excess mortality during COVID-19 pandemic in Peru. Respiratory physiology & neurobiology. 2020;281:103512-103512. doi:10.1016/j.resp.2020.103512
10. Zubieta-Calleja G, Zubieta-DeUrioste N, Venkatesh T, Das KK, Soliz J. COVID-19 and Pneumolysis Simulating Extreme High-altitude Exposure with Altered Oxygen Transport Physiology; Multiple Diseases, and Scarce Need of Ventilators: Andean Condor's-eye-view. Rev Recent Clin Trials. 2020;15(4):347-359. doi:10.2174/1574887115666200925141108
11. Soliz J, Schneider-Gasser EM, Arias-Reyes C, et al. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19? Respir Physiol Neurobiol. Aug 2020;279:103476. doi:10.1016/j.resp.2020.103476
12. Viruez-Soto A, Lopez-Davalos MM, Rada-Barrera G, et al. Low serum erythropoietin levels are associated with fatal COVID-19 cases at 4,150 meters above sea level. Respir Physiol Neurobiol. Oct 2021;292:103709. doi:10.1016/j.resp.2021.103709
13. Huamani C, Velasquez L, Montes S, Miranda-Solis F. Propagation by COVID-19 at high altitude: Cusco case. Respir Physiol Neurobiol. Aug 2020;279:103448. doi:10.1016/j.resp.2020.103448
14. Accinelli RA, Leon-Abarca JA. At High Altitude COVID-19 Is Less Frequent: The Experience of Peru. Arch Bronconeumol (Engl Ed). Nov 2020;56(11):760-761. En la altura la COVID-19 es menos frecuente: la experiencia del Peru. doi:10.1016/j.arbres.2020.06.015
15. Cano-Perez E, Torres-Pacheco J, Fragozo-Ramos MC, Garcia-Diaz G, Montalvo-Varela E, Pozo-Palacios JC. Negative Correlation between Altitude and COVID-19 Pandemic in Colombia: A Preliminary Report. Am J Trop Med Hyg. Dec 2020;103(6):2347-2349. doi:10.4269/ajtmh.20-1027
16. Bridgman C, Gerken J, Vincent J, Brooks AE, Zapata I. Revisiting the COVID-19 fatality rate and altitude association through a comprehensive analysis. Sci Rep. Oct 27 2022;12(1):18048. doi:10.1038/s41598-022-21787-z
17. Woolcott OO, Bergman RN. Mortality Attributed to COVID-19 in High-Altitude Populations. High Alt Med Biol. Dec 2020;21(4):409-416. doi:10.1089/ham.2020.0098
18. Zubieta-Calleja G, Merino-Luna A, Zubieta-DeUrioste N, et al. Re: "Mortality Attributed to COVID-19 in High-Altitude Populations" by Woolcott and Bergman. High Alt Med Biol. Mar 2021;22(1):102-104. doi:10.1089/ham.2020.0195
19. Faeh D, Gutzwiller F, Bopp M, Swiss National Cohort Study G. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. Aug 11 2009;120(6):495-501. doi:10.1161/CIRCULATIONAHA.108.81925
20. Stephens KE, Chernyavskiy P, Bruns DR. Impact of altitude on COVID-19 infection and death in the United States: A modeling and observational study. PLoS One. 2021;16(1):e0245055. doi:10.1371/journal.pone.0245055
21. (2021). INdE-
22. Ihwigb.https://www.daftlogic.com/sandbox-google-maps-find-altitude.htm. GMFA.
23. https://datos.covid-19.conacyt.mx/. C-TM-C-C-G-D.
24. Marco geoestadístico - Catálogo único de claves de áreas geoestadísticas estatales mylhwiomaa.
25. (2021). C-MdlSpMhwacaoihffeafaaffd.
26. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing V, Austria.
27. West JB. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers. J Physiol. Mar 1 2016;594(5):1127-34. doi:10.1113/JP270284
28. Longo LD. Sir Joseph Barcroft: one victorian physiologist's contributions to a half century of discovery. J Physiol. Mar 1 2016;594(5):1113-25. doi:10.1113/JP270078
29. Barcroft J (1925). The Respiratory Function of the Blood. Part I. Lessons from High Altitudes. Cambridge University Press C, UK.
30. Barcroft J (1951). Christianity and medicine. Lancet 2, 1176–1178.
31. Tinoco YO, Azziz-Baumgartner E, Uyeki TM, et al. Burden of Influenza in 4 Ecologically Distinct Regions of Peru: Household Active Surveillance of a Community Cohort, 2009-2015. Clin Infect Dis. Oct 16 2017;65(9):1532-1541. doi:10.1093/cid/cix565
32. Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med. Jun 16 2020;26(1):58. doi:10.1186/s10020-020-00186-y
33. Wing P, Keeley T, Zhuang X, et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports. 04/01 2021;35:109020. doi:10.1016/j.celrep.2021.109020
34. Zhang R, Wu Y, Zhao M, et al. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. Oct 2009;297(4):L631-40. doi:10.1152/ajplung.90415.2008
35. Gargaglioni LH, Marques DA. Let's talk about sex in the context of COVID-19. J Appl Physiol (1985). Jun 1 2020;128(6):1533-1538. doi:10.1152/japplphysiol.00335.2020
36. Accinelli RAL-A, J. A. Menor frecuencia y letalidad en mujeres y en la altura por COVID-19: dos caras de una misma moneda. Arch. Bronconeumol. 57, 70–72 (2021).
37. Korzeniewski SJ, Pappas A. Endogenous Erythropoietin. Vitam Horm. 2017;105:39-56. doi:10.1016/bs.vh.2017.03.003