Simultaneous Evaluation of Stiffness and Histology in Orthopedic Diseases Using Scanning Acoustic Microscope

Main Article Content

Katsutoshi Miura Toshihide Iwashita, Dr. Professor

Abstract

Organs with different levels of stiffness support the musculoskeletal system. Light microscopy cannot evaluate organ stiffness, whereas scanning acoustic microscopy (SAM) discriminates stiffness based on speed-of-sound (SOS) because sound waves pass faster in stiffer tissues. This study aimed to evaluate SOS imaging for orthopedic diseases using formalin-fixed paraffin-embedded sections. SOS imaging in SAM uses unstained light microscopic (LM) sections to prevent the bias of staining variation. Digital SOS values are comparable in different organ components and diseases.


Mouse organs with the lowest mean SOS values included the adipose tissue, bone marrow, calcified cartilage, and nucleus pulposus; those with intermediate values included hyaline cartilages, osteoid, skeletal muscles, cortical and trabecular bones, and ligaments; and those with the highest values comprised fibrocartilages of the vertebral disc and meniscus. Water contents and delipidating procedures decreased SOS values. Collagenous density and arrangement affected higher SOS values. The trabecular bones of mice were thinner and showed significantly lower values of SOS than those of humans.


Various orthopedic diseases and disorders displayed the characteristic SOS images. In osteoporosis, the trabecular bone becomes thin with lower SOS, indicating lesser stiffness to cause fractures. Comparison of woven and lamellar bones revealed that woven bones with lower SOS had lesser stiffness to fracture. Changes in SOS values indicated intramembranous bone formation. The trabecular bone develops from the connective tissues with an abrupt increase in SOS values. The regenerating process of bone fractures was monitored using SOS images, in which the granulation tissues transformed into calli in the osteoid to grow a new mineralized bone. The stiffness increased in phases, which appeared in SOS values.


Although several methods have been used to visualize the stiffness of biological tissues, SAM only needs 10-µm unstained slides and can simultaneously compare mechanical stiffness and histology. SOS images provide informative mechanical alterations of the bone, cartilage, and connective tissues to assess the status and diagnose a disorder.

Article Details

How to Cite
MIURA, Katsutoshi; IWASHITA, Toshihide. Simultaneous Evaluation of Stiffness and Histology in Orthopedic Diseases Using Scanning Acoustic Microscope. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4302>. Date accessed: 12 may 2024. doi: https://doi.org/10.18103/mra.v11i8.4302.
Section
Research Articles

References

1. Gaytan F, Morales C, Reymundo C, Tena-Sempere M. A novel RGB-trichrome staining method for routine histological analysis of musculoskeletal tissues. Sci Rep. 2020;10(1):1-13. doi:10.1038/s41598-020-74031-x
2. Ralis Z, Watkins G. Modified tetrachrome method for osteoid and defectively mineralized bone in paraffin sections. Biotech Histochem. 1992;67:339-345. doi:10.3109/10520299209110046
3. Yoshiki S. A simple histological method for identification of osteoid matrix in decalcified bone. Stain Technol. 1973;48:233-238. doi:10.3109/10520297309116630
4. Lemons R, Quate CF. Acoustic microscope—scanning version. Appl Phys Lett. 1974;24(4):163-165. doi:https://doi.org/10.1063/1.1655136
5. Miura K, Mineta H. Histological evaluation of thyroid lesions using a scanning acoustic microscope. Pathol Lab Med Int. 2014;6:1-9.
6. Miura K. Application of Scanning Acoustic Microscopy to Pathological Diagnosis. In: Stanciu SG, ed. Microscopy and Analysis. Intech; 2016:381-403. doi:10.5772/63405
7. Saijo Y. Recent Applications of Acoustic Microscopy for Quantitative Measurement of Acoustic Properties of Soft Tissues. In: Mamou J, Oelze M, eds. Quantitative Ultrasound in Soft Tissues. Springer; 2013:291–313. doi:10.1007/978-94-007-6952-6_12
8. Saijo Y. Acoustic microscopy: latest developments and applications. Imaging Med. 2009;1(1):47-63. doi:http://dx.doi.org/10.2217/iim.09.8
9. Azhari H. Appendix A: Typical Acoustic Properties of Tissues. Basics Biomed Ultrasound Eng. Published online 2010:313-314. doi:10.1002/9780470561478.app1
10. Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(7):1417-1431. doi:10.1109/TUFFC.2008.817
11. Granke M, Gourrier A, Rupin F, et al. Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale. PLoS One. 2013;8(3):1-11. doi:10.1371/journal.pone.0058043
12. Casanova M, Schindeler A, Little D, Müller R, Schneider P. Quantitative phenotyping of bone fracture repair: a review. Bonekey Rep. 2014;3(JULY):1-8. doi:10.1038/bonekey.2014.45
13. Miura K, Yamamoto S. Histological imaging from speed-of-sound through tissues by scanning acoustic microscopy (SAM). Protoc Exch. Published online 2013. doi:10.1038/protex.2013.040
14. Tamura K, Ito K, Yoshida S, Mamou J, Miura K, Yamamoto S. Alteration of speed-of-sound by fixatives and tissue processing methods in scanning acoustic microscopy. Front Phys. 2023;11. doi:10.3389/fphy.2023.1060296
15. Hozumi N, Yamashita R, Lee CK, et al. Time-frequency analysis for pulse driven ultrasonic microscopy for biological tissue characterization. In: Ultrasonics. ; 2004:717-722. doi:10.1016/j.ultras.2003.11.005
16. Wang W, Ye R, Xie W, et al. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol. 2022;10(August):1-12. doi:10.3389/fbioe.2022.911281
17. Hasegawa T, Hongo H, Yamamoto T, et al. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci. 2022;23(17). doi:10.3390/ijms23179941
18. Blumer MJF. Bone tissue and histological and molecular events during development of the long bones. Ann Anat. 2021;235:151704. doi:10.1016/j.aanat.2021.151704
19. Cicco FL De, Willhuber GOC. Nucleus Pulposus Herniation. StatPearls Publishing; 2023.
20. DeWall R. Ultrasound Elastography: Principles, Techniques, and Clinical Applications. Crit Rev Biomed Eng. 2013;41(1):1-19.
21. Manduca A, Bayly P V., Ehman RL, et al. MR elastography: Principles, guidelines, and terminology. Magn Reson Med. 2021;85(5):2377-2390. doi:10.1002/mrm.28627
22. Feng X, Li GY, Ramier A, Eltony AM, Yun SH. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater. 2022;146:295-305. doi:10.1016/j.actbio.2022.04.030
23. El-Gizawy AS, Ma X, Pfeiffer F, Schiffbauer JD, Selly T. Characterization of Microarchitectures, Stiffness and Strength of Human Trabecular Bone Using Micro-Computed Tomography (Micro-CT) Scans. BioMed. 2023;3(1):89-100. doi:10.3390/biomed3010007
24. Clarebrough L., Hargreaves M. Hardness testing of metallic materials. 1959;(February):1-3. https://www.researchgate.net/publication/349548712
25. Qian L, Zhao H. Nanoindentation of soft biological materials. Micromachines. 2018;9(12). doi:10.3390/mi9120654
26. Hiesgen R, Friedrich KA. Atomic force microscopy. PEM Fuel Cell Diagnostic Tools. 2011;(May 2017):395-421. doi:10.4011/shikizai.93.321
27. Miura K, Fukushi Y. Scanning acoustic microscopy imaging of cellular structural and mechanical alterations from external stimuli. Heliyon. 2021;7(8):e07847. doi:10.1016/j.heliyon.2021.e07847