Bidirectional Relationship Between the Central Nervous System and Peripheral Tumours

Main Article Content

Smith David Mackay

Abstract

The brain and its central nervous system circuitry communicate with all peripheral tissues through neuroendocrine, neuroimmune and neurovascular systems as well as peripheral neuronal networks. This applies to the abnormal situation of a tumour as much as normal biological function. The central nervous system can affect tumour development and metastases though activation or dysregulation of specific brain centres. It has also become apparent that the tumour is capable of building up local autonomic and sensory nerve networks and along with adipokines, cytokines, neurotrophic factors and afferent nerve inputs which can signal back to the brain to promote cancer initiation, growth and dissemination. An attempt is made to unravel this complex of relationships with an understanding that there is a common language spoken between the elements but also with an appreciation that these mechanisms are still only partially understood.

Article Details

How to Cite
MACKAY, Smith David. Bidirectional Relationship Between the Central Nervous System and Peripheral Tumours. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4312>. Date accessed: 13 may 2024. doi: https://doi.org/10.18103/mra.v11i8.4312.
Section
Research Articles

References

1. Schneider, K., Blank, N., Alvarez, Y., et al. The enteric nervous system relays psychological stress to intestinal inflammation. 2023. Cell; 186: 1-16.
2. Saul, A., et al. Chronic stress and susceptibility to skin cancer. 2005. J Natl Cancer Inst; 97: 1760-1767.
3. Reiche, E., Nunes, S., Morimeto, H. Stress, depression, the immune system and cancer. Lancet Oncol; 5: 617-625.
4. Obradovic, M., et al. Glucocorticoids promote breast cancer metastases. 2019. Nature; 567: 540-544.
5. Herman, J., et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. 2016. Compr. Physiol; 6: 603-621.
6. Gallo-Payet, N., Martinez, A., Lacroix, A. 2017. Editorial: ACTH action in the adrenal cortex: from molecular biology to pathophysiology. Front. Endocrinol; 8:101.
7. Riley, V. Mouse mammary tumours: alterations of incidence as apparent function of stress. 1975. Science; 189: 465-467.
8. Odradovic, M., et al. Glucocorticoids promote breast cancer metastases. 2019. Nature; 567: 540-544.
9. Cohen, D., Levi-Montaleini, R., Hamburger V. Nerve growth-stimulating factor isolated from sarcomas 37 and 180. 1954. Proc. Natl. Acad. Sci. USA; 40:1014-1018.
10. Liebig, C., Ayala, G., Wilks, S., et al. Perineural invasion in cancer: review of the literature. 2009. Cancer; 115: 3379-3391.
11. Amit, M., Na’ara S., Gil, Z. Mechanism of cancer dissemination along nerves. 2016. Nat Rev Cancer; 16: 399-403.
12. Gysler, S., Drapkin, R. Tumour innervation: peripheral nerves take control of the tumour microenvironment. 2021. J. Clin. Investig; https://doi.org/10.1172/JCI147276.
13. Zahalka, A., Frenette, P. Nerves in cancer. 2020. Nat. Rev. Cancer; 20: 143-157.
14. Cryer, P. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. 1980. N. Engl. J. Med; 303: 436-444.
15. Zuckerman-Levin, N., Tiossans, D., Eisenhofer, C., et al. The importance of adrenocorticoid for adrenomedullary and physiological response to stress: a study in isolated glucocorticoid deficiency. 2001. J. Clin. Endocrinol. Metab; 86: 5920-5924.
16. Ehrhart-Bornstein, M., Bornstein, S. Crosstalk between adrenal medulla and adrenal cortex in stress. 2008. Ann. NY. Acad. Sci; 1148: 112-117.
17. Herman, J., et al. Regulation of the hypothalamic-pituitary-adrenal stress response. 2016. Compr. Physiol; 6: 603-621.
18. Thaker, P., et al. Chronic stress promotes tumour growth and angiogenesis in a mouse model of ovarian cancer. Nat. Med; 12: 939-944.
19. Peters, l., Kelly, H. The influence of stress and stress hormones on the transplantability of a non-immunogenic syngeneic murine tumour. 1977. Cancer; 39: 1482-1488.
20. Buijs, R., Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. 2001. Nat. Rev. Neurosci; 2: 521-526.
21. Moore, R., Eichler, V. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesion in the rat. 1972. Brain Res; 42: 201-206.
22. Shafi, A., Knudsen, K. Cancer and the circadian clock. 2019. Cancer Res; 79: 3806-3814.
23. Papagiannakopoulos, T., et al. Circadian rhythm disruption promotes lung tumorigenesis. 2016. Cell Metab; 24: 324-331.
24. Davis, S., Mirick, D., Stevens, R. Night shift work, light at night and risk of breast cancer. 2001. J. Natl. Cancer Inst; 93: 1557-1562.
25. Van Dycke, K., et al. Chronic alternating light cycles increase breast cancer risk in mice. 2015. Curr. Biol; 25: 1932-1937.
26. Conlon, M., Lightfoot, N., Kreiger, N. Rotating shift work and risk of prostate cancer. 2007. Epidemiol.; 18: 182-183.
27. Wendeu-Foyet, M., Meneguax, F. Circadian disruption and prostate cancer risk: an updated review of epidemiological evidence. 2017. Cancer Epidemiol. Biomark Prev; 26: 985-991.
28. Papantoniou, K., et al. Rotating night shift work and colorectal cancer risk in the Nurse’s health study. 2018. Ent. J. Cancer; 143: 2709-2717.
29. Ueyama, T., et al. Suprachiasmatic nucleus: a central autonomic clock. 1999. Nat. Neurosci; 2: 1051-1053.
30. Buijs, R., Chun, S., Nijima, R., et al. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centres that are involved in the regulation of food intake. 2001. J. Com. Neurol; 431: 405-423.
31. Calvo, J., González-Yanes, C., Maldonado, M. The role of melatonin in the cells of the innate immunity: a review. 2013. J Pineal Res; 55: 103-120.
32. Glickman, G., Levin, R., Brainard, G. Ocular input for human melatonin regulation: relevance to breast cancer. 2002. Neuro. Endocrinol; Lett23: 17-22.
33. Lissoni, P., et al. A clinical study of pineal gland activity in oncological patients. 1986. Cancer: 57: 837-842.
34. Blask, D., et al. Melatonin depleted blood from post-menopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. 2005. Cancer Res; 65: 11174-11184.
35. IARC monographs Vol 124 group. Carcinogenicity of night shift work. 2019. Lancet Oncol; 20: 1058-1059.
36. Bonnavion, P., Jackson, A., Carter, M., et al. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. 2015. Nat. Commun; 6: 6266.
37. Magnon, C., Hondermarck, H. Neural addiction of cancer. 2023. Nature Rev. Cancer; 23: 317-334.
38. McAlpine, C., et al. Sleep modulates haematopoiesis and protects against atherosclerosis. 2005. Nature: 566: 383-387.
39. Callicchio, L., Kalesan, B. Sleep disturbance and mortality: A systematic review and meta-analysis. 2009. J. Sleep Res; 18: 848-858.
40. Harkin, F., et al. Fragmented sleep accelerates tumour growth and progression through recruitment of tumour-associated macrophages and TLR signalling. 2014. Cancer Res; 74: 1329-1337.
41. Borniger J., et al. A role for hypocretin/orexin in metabolism and sleep abnormalities in a mouse model of non-metastatic breast cancer. 2018. Cell Metab.; 28: 118-129e5.
42. Kahn, R., et al. Schizophrenia. 2015. Nat. Rev. Dis. Prim, 1: 115067.
43. Peters, M., et al. Dopamine and serotonin regulate tumour behaviour by affecting angiogenesis. 2014. Drug Resist. Updat; 17: 96-104.
44. Ben-Shaanan, T., et al. Modification of anti-tumour immunity by the brain’s reward system. 2018. Nat. Commun; 9: 2723.
45. Mauffrey, P., et al. Progenitors from the central nervous system drive neurogenesis in cancer. 2019. Nature 569: 672-678.
46. Ergrul, C., Eichenbaum, H. The hippocampus and memory for what where and when. 2004. Learning & Memory; 11(4): 397-405.
47. Venkataramani, V., et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. 2019. Nature; 532-538.
48. Zeng, Q., et al. Synaptic proximity enables NMDAR signalling to promote brain metastases. 2019. Nature; 573: 526-531.
49. Myers, M. Jr., Munzberg, H., Leinninger, G., et al. The geometry of leptin action in the brain: more complicated than a simple ARC. 2009. Cell Metab; 9: 117-123.
50. Garofalo, C., et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression. 2006. Clin. Cancer Res; 12: 1447-1453.
51. Ringel, A., et al. Obesity shapes metabolism in the tumour microenvironment to suppress anti-tumour immunity. 2020. Cell; 183: 1848-1866.
52. Ishikawa, M., Kitayama, J., Nigawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. 2004. Clin. Cancer Res; 10: 4325-4331.
53. Cao, L., et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. 2010. Cell; 42: 52-64.
54. Wang, P., et al. A leptin-BDNF pathway regulates sympathetic innovation of adipose tissue. 2020. Nature; 583: 839-844.
55. Peterson, S., et al. Basal cell carcinoma preferentially arises from stem cells within hair follicles and mechanosensory niches. 2015. Cell Stem Cell; 16: 400-412.
56. Saloman, J., et al. Ablation of sensory neurons in a genetic model of pancreatic duct adenocarcinoma. 2016. Proc. Natl. Acad. Sci. USA; 413: 3078-3083.
57. Sinha, S., et al. PanIN neuroendocrine cell promote tumorigenesis via neuronal crosstalk. 2017 Cancer Res; 77: 1868-1879.
58. Mantyh, P., et al. Cancer pain and its impact on diagnosis, survival and quality of life. 2006. Nat. Rev. Neurosci; 7: 797-809.
59. Chen, P., et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. 2020. Nature; 606: 550-556.
60. Balood, M., et al. Nociceptor neurons affect cancer immunosurveilance. 2022. Nature; 611: 405-446