Trans-Thoracic Echocardiographic Parameters for Prognostic Assessment Across the Spectrum of Heart Failure

Main Article Content

Imran Hameed

Abstract

Heart failure with increasing life expectancy has become the leading cause of morbidity and mortality in modern day world, begetting great economic burden. Usually diagnosed by specific criteria, Framingham’s being the most commonly employed, heart failure has been classified on the basis of left ventricular ejection fraction measured by transthoracic echocardiography as heart failure with preserved ejection fraction (HFpEF, LVEF ≥ 50%), heart failure with mid-range EF (HFmrEF, LVEF 41-49%) and heart failure with reduced EF (HFrEF, LVEF ≤ 40%), constituting the “spectrum”. For the diagnosis of HFpEF, elevated biochemical markers and presence of cardiac structural abnormalities or diastolic dysfunction are also required whereas for the other types only ejection fraction, with appropriate symptoms/signs are needed. It is quite clear that echocardiography plays a central role in diagnosis and classification of heart failure. Mostly, of the prognostic markers mortality and hospitalization have been assessed in clinical trials. Here also echocardiography plays a prominent role and every modality of it (with numerous parameters) including M-mode, 2D, color, spectral and tissue Doppler along with recent addition of strain imaging provide important clues. These clues not only work for heart failure as a whole but also for the individual classes. Many studies have provided insights into the comparative efficacy of these markers across the spectrum. The prognostic power of these echo parameters has been assessed either individually or in combination. Various scoring systems have also been formulated. An individual patient can transit through the classes of heart failure over time and certain echo parameters provide an indication in this regard as well. Structural parameters of both sides of the heart along with functional and hemodynamic assessment provide prognostic insights with strain measures showing superiority. No large-scale clinical trial has yet been done in which all the parameters across the spectrum of heart failure have been studied. An appraisal of clinically important echo markers for prognostic assessment across the spectrum is the subject of this descriptive review.

Keywords: Heart failure, echocardiography, prognosis, phenotypes of heart failure, ejection fraction

Article Details

How to Cite
HAMEED, Imran. Trans-Thoracic Echocardiographic Parameters for Prognostic Assessment Across the Spectrum of Heart Failure. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4325>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i8.4325.
Section
Research Articles

References

1. Braunwald E. Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. New England Journal of Medicine. 1997;337:1360-1369.
2. Ammar KA, Jacobsen SJ, Mahoney DW, et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation. 2007;115(12):1563-1570. doi:10.1161/CIRCULATIONAHA.106.666818
3. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol (Engl Ed). 2022;75(6):523. doi:10.1016/j.rec.2022.05.005
4. Przewlocka-Kosmala M, Butler J, Donal E, Ponikowski P, Kosmala W. Prognostic value of the MAGGIC score, H2FPEF score, and HFA-PEFF algorithm in patients with exertional dyspnea and the incremental value of exercise echocardiography. J Am Soc Echocardiogr. 2022;35(9):966-975. doi:10.1016/j.echo.2022.05.006
5. Linde C, Ekström M, Eriksson MJ, et al. Baseline characteristics of 547 new onset heart failure patients in the PREFERS heart failure study. ESC Heart Fail. 2022;9(4):2125-2138. doi:10.1002/ehf2.13922
6. Hwang IC, Cho GY, Choi HM, et al. Derivation and validation of a mortality risk prediction model using global longitudinal strain in patients with acute heart failure. Eur Heart J Cardiovasc Imaging. 2020;21(12):1412-1420. doi:10.1093/ehjci/jez300
7. Pellikka PA, She L, Holly TA, et al. Variability in ejection fraction measured by echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction. JAMA Net Open. 2018;1(4):e181456. doi:10.1001/jamanetworkopen.2018.1456
8. NHFA CSANZ Heart Failure Guidelines Working Group, Atherton JJ, Sindone A, et al. National heart foundation of Australia and cardiac society of Australia and New Zealand: Guidelines for the prevention, detection, and management of heart failure in Australia 2018. Heart Lung Circ. 2018;27(10):1123-1208. doi:10.1016/j.hlc.2018.06.1042
9. Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart failure with recovered left ventricular ejection fraction: JACC Scientific Expert Panel. J Am Coll Cardiol. 2020;76(6):719-734. doi:10.1016/j.jacc.2020.05.075
10. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342-1356. doi:10.1002/ejhf.1858
11. Ponikowski P, Anker SD, AlHabib KF, et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 2014;1(1):4-25. doi:10.1002/ehf2.12005
12. Reyes EB, Ha JW, Firdaus I, et al. Heart failure across Asia: Same healthcare burden but differences in organization of care. Int J Cardiol. 2016;223:163-167. doi:10.1016/j.ijcard.2016.07.256
13. Martinez-Amezcua P, Haque W, Cainzos-Achirica M. Response by Martinez-Amezcua et al to letter regarding article, ‘the upcoming epidemic of heart failure in south Asia’. Circ Heart Fail. 2021;14(2):e008302. doi:10.1161/CIRCHEARTFAILURE.120.008302
14. Peng X, Wang J, Li J, et al. Gender-specific prevalence and trend of heart failure in China from 1990 to 2019. ESC Heart Fail. 2023;10(3):1883-1895. doi:10.1002/ehf2.14361
15. Evelien ES. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. European journal of heart failure. 2016;18:242-252.
16. Ceia F, Fonseca C, Mota T, et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail. 2002;4(4):531-539. doi:10.1016/s1388-9842(02)00034-x
17. Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction. Front Physiol. 2022;13:928232. doi:10.3389/fphys.2022.928232
18. De Boer AR, Vaartjes I, Gohar A, et al. Heart failure with preserved, mid-range, and reduced ejection fraction across health care settings: an observational study. ESC heart failure. 2022;9:363-372.
19. Branca L, Sbolli M, Metra M, Fudim M. Heart failure with mid-range ejection fraction: pro and cons of the new classification of Heart Failure by European Society of Cardiology guidelines. ESC heart failure. 2020;7:381-399.
20. Lupón J, Díez-López C, de Antonio M, et al. Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail. 2017;19(12):1615-1623. doi:10.1002/ejhf.824
21. Juenger J. Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables. Br Heart J. 2002;87(3):235-241. doi:10.1136/heart.87.3.235
22. Shah KS, Xu H, Matsouaka RA et al. Heart Failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70(20):2476-2486
23. Son MK, Park JJ, Lim NK, Kim WH, Choi DJ. Impact of atrial fibrillation in patients with heart failure and reduced, mid-range or preserved ejection fraction. Heart. 2020;106(15):1160-1168. doi:10.1136/heartjnl-2019-316219
24. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33(14):1750-1757. doi:10.1093/eurheartj/ehr254
25. Somaratne JB, Berry C, McMurray JJV, Poppe KK, Doughty RN, Whalley GA. The prognostic significance of heart failure with preserved left ventricular ejection fraction: a literature-based meta-analysis. Eur J Heart Fail. 2009;11(9):855-862. doi:10.1093/eurjhf/hfp103
26. Huusko J, Tuominen S, Studer R, et al. Recurrent hospitalizations are associated with increased mortality across the ejection fraction range in heart failure. ESC Heart Fail. 2020;7(5):2406-2417. doi:10.1002/ehf2.12792
27. Farré N, Lupon J, Roig E, et al. Clinical characteristics, one-year change in ejection fraction and long-term outcomes in patients with heart failure with mid-range ejection fraction: a multicentre prospective observational study in Catalonia (Spain). BMJ Open. 2017;7(12):e018719. doi:10.1136/bmjopen-2017-018719
28. Chen S, Huang Z, Liang Y, et al. Five-year mortality of heart failure with preserved, mildly reduced, and reduced ejection fraction in a 4880 Chinese cohort. ESC Heart Fail. 2022;9(4):2336-2347. doi:10.1002/ehf2.13921
29. Lauritsen J, Gustafsson F, Abdulla J. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction: a systematic review and meta-analysis. ESC heart failure. 2018;5:685-694.
30. Huusko J, Tuominen S, Studer R, et al. Recurrent hospitalizations are associated with increased mortality across the ejection fraction range in heart failure. ESC Heart Fail. 2020;7(5):2406-2417. doi:10.1002/ehf2.12792
31. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic accuracy of Tissue Doppler index E/è for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: A systematic review and meta‐analysis. J Am Heart Assoc. 2016;5(1). doi:10.1161/JAHA.115.002530
32. Zamora E, Lupón J, López-Ayerbe J, et al. Left atrium diameter: a simple echocardiographic parameter with high prognostic value in heart failure. Med Clin (Barc). 2007;129(12):441-445. https://www.ncbi.nlm.nih.gov/pubmed/17953907
33. Rossi A, Temporelli PL, Quintana M, et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur J Heart Fail. 2009;11(10):929-936. doi:10.1093/eurjhf/hfp112
34. Shiba, M., Kato, T., Morimoto, T., et al. Prognostic value of reduction in left atrial size during a follow-up of heart failure: an observational study. BMJ open. 2021 11(2), e044409.
35. Tamura H, Watanabe T, Nishiyama S, et al. Increased left atrial volume index predicts a poor prognosis in patients with heart failure. J Card Fail. 2011;17(3):210-216. doi:10.1016/j.cardfail.2010.10.006
36. Kanagala P, Arnold JR, Singh A, et al. Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach. PLoS One. 2020;15(4):e0232280. doi:10.1371/journal.pone.0232280
37. Shin SH, Claggett B, Inciardi RM, et al. Prognostic value of minimal left atrial volume in heart failure with preserved ejection fraction. J Am Heart Assoc. 2021;10(15). doi:10.1161/jaha.120.019545
38. Fatema K, Barnes ME, Bailey KR, et al. Minimum vs. maximum left atrial volume for prediction of first atrial fibrillation or flutter in an elderly cohort: a prospective study. Eur J Echocardiogr. 2009;10(2):282-286. doi:10.1093/ejechocard/jen235
39. Modin D, Sengeløv M, Jørgensen PG, et al. Prognostic value of left atrial functional measures in heart failure with reduced ejection fraction. J Card Fail. 2019;25(2):87-96. doi:10.1016/j.cardfail.2018.11.016
40. Shih-Hung KR. Left atrial expansion index predicts all-cause mortality and heart failure admissions in dyspnoea. European journal of heart failure. 2013;15:1245-1252. doi:10.1093/eurjhf/hft087
41. Shiba M, Kato T, Morimoto T, et al. Left atrial reverse remodeling improves risk stratification in patients with heart failure with recovered ejection fraction. Sci Rep. 2022;12(1):4473. doi:10.1038/s41598-022-08630-1
42. Shen X, Nair CK, Holmberg MJ, et al. Impact of left atrial volume in prediction of outcome after cardiac resynchronization therapy. Int J Cardiol. 2011;152(1):13-17. doi:10.1016/j.ijcard.2010.06.016
43. Stefan L, Sedláček K, Černá D, et al. Small left atrium and mild mitral regurgitation predict super-response to cardiac resynchronization therapy. Europace. 2012;14(11):1608-1614. doi:10.1093/europace/eus075
44. Pereira J, Chaves V, Tavares S, et al. Systolic function recovery in Heart Failure: Frequency, prognostic impact and predictors. Int J Cardiol. 2020;300:172-177. doi:10.1016/j.ijcard.2019.11.126
45. Markus MRP, Freitas HFG de, Chizzola PR, Silva GT da, Lima ACP de, Mansur AJ. Left ventricular mass in patients with heart failure. Arq Bras Cardiol. 2004;83(3):232-236; 227-231. doi:10.1590/s0066-782x2004001500006
46. Dini FL, Capozza P, Donati F, et al. Patterns of left ventricular remodeling in chronic heart failure: prevalence and prognostic implications. Am Heart J. 2011;161(6):1088-1095. doi:10.1016/j.ahj.2011.03.027
47. Savarese G, Vedin O, D’Amario D, et al. Prevalence and prognostic implications of longitudinal ejection fraction change in heart failure. JACC Heart Fail. 2019;7(4):306-317. doi:10.1016/j.jchf.2018.11.019
48. Albert J, Lezius S, Störk S, et al. Trajectories of left ventricular ejection fraction after acute decompensation for systolic heart failure: Concomitant echocardiographic and systemic changes, predictors, and impact on clinical outcomes. J Am Heart Assoc. 2021;10(3):e017822. doi:10.1161/JAHA.120.017822
49. Rastogi A, Novak E, Platts A, et al. Epidemiology, pathophysiology, and clinical outcomes for heart failure patients with a mid‐range ejection fraction. European journal of heart failure. 2017 19(12), 1597-1605.
50. Zhang X, Sun Y, Zhang Y, et al. Characteristics and outcomes of heart failure with recovered left ventricular ejection fraction. ESC Heart Fail. 2021;8(6):5383-5391. doi:10.1002/ehf2.13630
51. Ghimire A, Fine N, Ezekowitz JA, Howlett J, Youngson E, McAlister FA. Frequency, predictors, and prognosis of ejection fraction improvement in heart failure: an echocardiogram-based registry study. Eur Heart J. 2019;40(26):2110-2117. doi:10.1093/eurheartj/ehz233
52. Shah MA, Soofi MA, Jafary Z, et al. Echocardiographic parameters associated with recovery in heart failure with reduced ejection fraction. Echocardiography. 2020;37(10):1574-1582. doi:10.1111/echo.14859
53. Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35(48):3452-3462. doi:10.1093/eurheartj/ehu193
54. Mele D, Pestelli G, Molin DD, et al. Right atrial pressure is associated with outcomes in patients with heart failure and indeterminate left ventricular filling pressure. J Am Soc Echocardiogr. 2020;33(11):1345-1356. doi:10.1016/j.echo.2020.05.027
55. Pellicori P, Carubelli V, Zhang J, et al. IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging. 2013;6(1):16-28. doi:10.1016/j.jcmg.2012.08.012
56. Harjai KJ, Scott L, Vivekananthan K, Nunez E, Edupuganti R. The Tei index: a new prognostic index for patients with symptomatic heart failure. J Am Soc Echocardiogr. 2002;15(9):864-868. doi:10.1067/mje.2002.120892
57. Acil T, Wichter T, Stypmann J, et al. Prognostic value of tissue Doppler imaging in patients with chronic congestive heart failure. Int J Cardiol. 2005;103(2):175-181. doi:10.1016/j.ijcard.2004.08.048
58. Lam CSP, Han L, Ha JW, Oh JK, Ling LH. The mitral L wave: a marker of pseudonormal filling and predictor of heart failure in patients with left ventricular hypertrophy. J Am Soc Echocardiogr. 2005;18(4):336-341. doi:10.1016/j.echo.2004.10.019
59. Akioka K, Takeuchi K, Yanagi S, et al. Prognostic value of Doppler transmitral flow patterns and cardiac natriuretic peptides in patients with chronic congestive heart failure admitted for episodes of acute decompensation. Heart Vessels. 2000;15(2):53-60. doi:10.1007/s003800070032
60. Liu D, Hu K, Lau K, et al. Impact of diastolic dysfunction on outcome in heart failure patients with mid-range or reduced ejection fraction. ESC Heart Fail. 2021;8(4):2802-2815. doi:10.1002/ehf2.13352
61. Zamfirescu MB, Ghilencea LN, Popescu MR, et al. The E/e’Ratio-Role in Risk Stratification of Acute Heart Failure with Preserved Ejection Fraction. Medicina. 2021;57(4).
62. Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1303-1311. doi:10.1002/ejhf.1220
63. Obokata M, Reddy YNV, Melenovsky V, Pislaru S, Borlaug BA. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J. 2019;40(8):689-697. doi:10.1093/eurheartj/ehy809
64. Nakagawa A, Yasumura Y, Yoshida C, et al. Distinctive prognostic factor of heart failure with preserved ejection fraction stratified with admission blood pressure. ESC Heart Fail. 2021;8(4):3145-3155. doi:10.1002/ehf2.13420
65. Nakagawa A, Yasumura Y, Yoshida C, et al. Prognostic importance of right ventricular-vascular uncoupling in acute decompensated Heart Failure with Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2020;13(11):e011430. doi:10.1161/CIRCIMAGING.120.011430
66. Meluzin J, Spinarová L, Hude P, et al. Prognostic importance of various echocardiographic right ventricular functional parameters in patients with symptomatic heart failure. J Am Soc Echocardiogr. 2005;18(5):435-444. doi:10.1016/j.echo.2005.02.004
67. Salamon JN, Kelesidis I, Msaouel P, et al. Outcomes in World Health Organization group II pulmonary hypertension: mortality and readmission trends with systolic and preserved ejection fraction-induced pulmonary hypertension. J Card Fail. 2014;20(7):467-475. doi:10.1016/j.cardfail.2014.05.003
68. Zafrir B, Carasso S, Goland S, et al. The impact of left ventricular ejection fraction on heart failure patients with pulmonary hypertension. Heart Lung. 2019;48(6):502-506. doi:10.1016/j.hrtlng.2019.05.006
69. Rossi A, Dini FL, Faggiano P, et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart. 2011;97(20):1675-1680. doi:10.1136/hrt.2011.225789
70. Bandera F, Barletta M, Fontana M, et al. Exercise-induced mitral regurgitation and right ventricle to pulmonary circulation uncoupling across the heart failure phenotypes. Am J Physiol Heart Circ Physiol. 2021;320(2):H642-H653. doi:10.1152/ajpheart.00507.2020
71. Bursi F, Barbieri A, Grigioni F, et al. Prognostic implications of functional mitral regurgitation according to the severity of the underlying chronic heart failure: a long-term outcome study. Eur J Heart Fail. 2010;12(4):382-388. doi:10.1093/eurjhf/hfq014
72. Goliasch G, Bartko PE, Pavo N, et al. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. Eur Heart J. 2018;39(1):39-46. doi:10.1093/eurheartj/ehx402
73. Kajimoto K, Sato N, Takano T, investigators of the Acute Decompensated Heart Failure Syndromes (ATTEND) registry. Functional mitral regurgitation at discharge and outcomes in patients hospitalized for acute decompensated heart failure with a preserved or reduced ejection fraction. Eur J Heart Fail. 2016;18(8):1051-1059. doi:10.1002/ejhf.562
74. Tamargo M, Obokata M, Reddy YNV, et al. Functional mitral regurgitation and left atrial myopathy in heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):489-498. doi:10.1002/ejhf.1699
75. Shahim A, Hourqueig M, Donal E, et al. Predictors of long-term outcome in heart failure with preserved ejection fraction: a follow-up from the KaRen study. ESC Heart Fail. 2021;8(5):4243-4254. doi:10.1002/ehf2.13533
76. Topilsky Y, Inojosa JM, Benfari G, et al. Clinical presentation and outcome of tricuspid regurgitation in patients with systolic dysfunction. Eur Heart J. 2018;39(39):3584-3592. doi:10.1093/eurheartj/ehy434
77. Benfari G, Antoine C, Miller WL, et al. Excess mortality associated with functional tricuspid regurgitation complicating heart failure with reduced ejection fraction. Circulation. 2019;140(3):196-206. doi:10.1161/CIRCULATIONAHA.118.038946
78. Messika-Zeitoun D, Verta P, Gregson J, et al. Impact of tricuspid regurgitation on survival in patients with heart failure: a large electronic health record patient-level database analysis. Eur J Heart Fail. 2020;22(10):1803-1813. doi:10.1002/ejhf.1830
79. Xu B, Kawata T, Daimon M, et al. Prognostic value of a simple echocardiographic parameter, the right ventricular systolic to diastolic duration ratio, in patients with advanced heart failure with non-ischemic dilated cardiomyopathy. Int Heart J. 2018;59(5):968-975. doi:10.1536/ihj.17-475
80. Huttin O, Fraser AG, Lund LH, et al. Risk stratification with echocardiographic biomarkers in heart failure with preserved ejection fraction: the media echo score. ESC heart failure. 2021;8:1827-1839.
81. Dini FL, Carluccio E, Bitto R, et al. Echocardiographically defined haemodynamic categorization predicts prognosis in ambulatory heart failure patients treated with sacubitril/valsartan. ESC Heart Fail. 2022;9(2):1107-1117. doi:10.1002/ehf2.13779
82. Abe H, Kosugi S, Ozaki T, et al. Prognostic impact of echocardiographic congestion grade in HFpEF with and without atrial fibrillation. JACC Asia. 2022;2(1):73-84. doi:10.1016/j.jacasi.2021.10.012
83. Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1664-1671. doi:10.1002/ejhf.873
84. Chen JS, Pei Y, Li CE, Li NY, Guo T, Yu J. Prognostic value of heart failure echocardiography index in HF patients with preserved, mid-ranged and reduced ejection fraction. BMC Cardiovasc Disord. 2020;20(1):351. doi:10.1186/s12872-020-01635-6
85. Sun Y, Wang N, Li X, et al. Predictive value of H2 FPEF score in patients with heart failure with preserved ejection fraction. ESC Heart Fail. 2021;8(2):1244-1252. doi:10.1002/ehf2.13187
86. Shah AM, Shah SJ, Anand IS, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014;7(1):104-115. doi:10.1161/CIRCHEARTFAILURE.113.000887
87. Gorter TM, van Woerden G, Rienstra M, et al. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8(8):667-676. doi:10.1016/j.jchf.2020.06.003
88. van Woerden G, van Veldhuisen DJ, Manintveld OC, et al. Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction. Circ Heart Fail. 2022;15(3):e009238. doi:10.1161/CIRCHEARTFAILURE.121.009238
89. Saito M, Negishi K, Eskandari M, et al. Association of left ventricular strain with 30-day mortality and readmission in patients with heart failure. J Am Soc Echocardiogr. 2015;28(6):652-666. doi:10.1016/j.echo.2015.02.007
90. Park JJ, Mebazaa A, Hwang IC, Park JB, Park JH, Cho GY. Phenotyping heart failure according to the longitudinal ejection fraction change: Myocardial strain, predictors, and outcomes. J Am Heart Assoc. 2020;9(12):e015009. doi:10.1161/JAHA.119.015009
91. Gozdzik A, Marwick TH, Przewlocka-Kosmala M, Jankowska EA, Ponikowski P, Kosmala W. Comparison of left ventricular longitudinal systolic function parameters in the prediction of adverse outcome in heart failure with preserved ejection fraction. ESC Heart Fail. 2021;8(2):1531-1540. doi:10.1002/ehf2.13247
92. Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: The case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):260-274. doi:10.1016/j.jcmg.2017.11.017
93. Sengeløv M, Jørgensen PG, Jensen JS, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351-1359. doi:10.1016/j.jcmg.2015.07.013
94. Santos AB. Prognostic Relevance of Left Atrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation: Circulation Heart failure. 2016;9. doi:10.1161/CIRCHEARTFAILURE.115.002763
95. Malagoli A, Rossi L, Bursi F, et al. Left atrial function predicts cardiovascular events in patients with chronic heart failure with reduced ejection fraction. J Am Soc Echocardiogr. 2019;32(2):248-256. doi:10.1016/j.echo.2018.08.012
96. Carluccio E. Left atrial reservoir function and outcome in heart failure with reduced ejection fraction: the importance of atrial strain by speckle tracking echocardiography. Circulation: Cardiovascular Imaging. 2018;11.
97. Sanchis L, Andrea R, Falces C, et al. Prognostic value of left atrial strain in outpatients with DE Novo heart failure. J Am Soc Echocardiogr. 2016;29(11):1035-1042.e1. doi:10.1016/j.echo.2016.07.01
98. Maffeis C, Morris DA, Belyavskiy E, et al. Left atrial function and maximal exercise capacity in heart failure with preserved and mid-range ejection fraction. ESC Heart Fail. 2021;8(1):116-128. doi:10.1002/ehf2.13143
99. Jasic-Szpak E, Marwick TH, Donal E, et al. Prediction of AF in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2021;14(1):131-144. doi:10.1016/j.jcmg.2020.07.040
100. Bytyçi I, Dini FL, Bajraktari A, et al. Speckle tracking-derived left atrial stiffness predicts clinical outcome in heart failure patients with reduced to mid-range ejection fraction. J Clin Med. 2020;9(5):1244. doi:10.3390/jcm9051244
101. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29(4):277-314. doi:10.1016/j.echo.2016.01.011
102. Lejeune S, Roy C, Ciocea V, et al. Right ventricular global longitudinal strain and outcomes in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2020;33(8):973-984.e2. doi:10.1016/j.echo.2020.02.016
103. Motoki H, Borowski AG, Shrestha K, et al. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 2014;27(7):726-732. doi:10.1016/j.echo.2014.02.007
104. Houard L, Benaets MB, de Meester de Ravenstein C, et al. Additional prognostic value of 2D right ventricular speckle-tracking strain for prediction of survival in heart failure and reduced ejection fraction: A comparative study with cardiac magnetic resonance. JACC Cardiovasc Imaging. 2019;12(12):2373-2385. doi:10.1016/j.jcmg.2018.11.028
105. Carluccio E, Biagioli P, Lauciello R, et al. Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr. 2019;32(7):836-844.e1. doi:10.1016/j.echo.2019.02.011
106. Kagami K, Harada T, Yoshida K, et al. Impaired right atrial reserve function in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2022;35(8):836-845. doi:10.1016/j.echo.2022.03.006.