Potential Impact of Genetic-Code Mutations on Medicine and Health

Main Article Content

Tze-Fei Wong Hong Xue

Abstract

The genetic code encoding amino acid sequences in ribosomal translation consists of an alphabet of 61 triplet codons for 20 amino acids and three chain termination signals. Basically the same universal code is employed by all organisms from the Last Universal Common Ancestor (LUCA)-proximal Methanobacter kandleri (Mka) to humans. This universal code, which has remained invariant for all living species, enables the transplantation of protein-coding genes between different species without loss of function, and constrains the chemical diversity of the encoded amino acids. Over the initial decades following the discovery of the code, its invariance coupled with the lack of any information regarding its origin have led to the view that the code might represent an inexplicable ‘frozen accident’ in the history of life. However, with the formulation of the coevolution theory of the genetic code and its multifaceted supporting evidence, this view has become untenable. Instead, the encoded amino acids are known to comprise two different classes: ten Class 1 amino acids available on prebiotic Earth were incorporated into the protocells as they evolved into life forms, while the ten Class 2 amino acids were produced by early life through biosynthesis. Thus, the later entry of the Class 2 amino acids identified them as end products of cellular evolution, which suggests the plausibility of continuing alterations of the encoded amino acids after an eons-long pause. Accordingly, attempts were made by our group to replace Trp by 4-fluroTrp (4FTrp) from the proteome of Bacillus subtilis. The targeted replacement obtained proved the inherent mutability of the code, and this has stimulated the development of a wide range of mutated codes through a variety of approaches. Hundreds of genetic code mutants have now been successfully isolated from microbes to animals, transforming the code from an immutable construct to a highly malleable molecular device. The effects of such new codes on medicine and health range from treatments for a variety of diseases to the alleviation of food crisis arising from the degradation of the environment and devastation due to natural disasters.

Article Details

How to Cite
WONG, Tze-Fei; XUE, Hong. Potential Impact of Genetic-Code Mutations on Medicine and Health. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4331>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i8.4331.
Section
Research Articles

References

1. Corliss JB, Dymond J, Gordon LI, et al. Submarine thermal springs on the Galapagos rift. Science. 1979;203(4385):1073-1083. doi:10.1126/science.203.4385.1073.
2. Baross JA, Hoffman SE. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph. 1985;15(4):327-345. doi:10.1007/bf01808177.
3. Shock EL. Constraints on the origins of organic compounds in hydrothermal vent, Orig Life Evol Biosph. 1990; 20:331-367.
4. Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B Biol Sci. 2006;362(1486): 1887-1926. doi:10.1098/rstb.2006.1881.
5. Muchowska KB, Chevallot-Beroux E, Morana J. Recreating ancient metabolic pathways before enzymes. Bioorganic Med Chem. 2019;27(12):2292-2297. doi:10.1016/j.bmc.2019.03.012.
6. Lane N, Allen JF Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays. 2010;32(4):271-280. doi:10.1002/bies.200900131.
7. Huber R, Kurr M, Jannasch HW, Stetter KO. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110℃. Nature. 1989;342(6251):833-834. doi:10.1038/342833a0.
8. Xue H, Tong KL, Marck C, Grosjean H, Wong JTF. Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene. 2003;310:59-66. doi:10.1016/s0378-1119(03)00552-3.
9. Wong JTF, Ng SK, Mat WK, Hu T, Xue H. Coevolution theory of the genetic code at age forty: pathway to translation and synthetic life. Life. 2016;6(1):12. doi:10.3390/life6010012.
10. Long X, Xue H, Wong JTF. Descent of bacteria and eukarya from an archaeal root of life. Evol Bioinfor 2020; 16: 1-11.
11. Blank CE. Low rates of lateral gene transfer among metabolic genes define the evolving biogeochemical niches of archaea through deep time. Archaea. 2012;2012:1-23. doi:10.1155/2012/843539.
12. Gilbert W. Origin of life: The RNA world. Nature. 1986;319(6055):618-618. doi:10.1038/319618a0.
13. Cech TR. Self-splicing of group I introns. Annu Rev Biochem. 1990;59(1):543-568. doi:10.1146/annurev.bi.59.070190.002551
14. Stairs S, Nikmal A, Bučar DK, Zheng SL, Szostak JW, Powner MW. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat Commun s. 2017;8(1). doi:10.1038/ncomms15270.
15. Callahan MP, Smith KE, Cleaves HJ II, et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 2011;108(34):13995-13998. doi:10.1073/pnas.1106493108.
16. Tjhung KF, Shokhirev MN, Horning DP, Joyce GF. An RNA polymerase ribozyme that synthesizes its own ancestor. Proc Natl Acad Sci USA. 2020;117(6):2906-2913. doi:10.1073/pnas.1914282117.
17. Orgel, L. E.Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol. 2004;39(2):99-123. doi:10.1080/10409230490460765.
18. Joyce GF, Orgel LE. Prospects for understanding the origin of the RNA World. In: Gesteland RF, Cech TR, Atkins JF, eds. The RNA World, Second Edition. Cold Spring Harbor Laboratory Press; 1999:49-77. doi:10.1017/S1355838299001259.
19. Wong JTF. Emergence of life: from functional RNA selection to natural selection and beyond. Front Biosci - Landmark. 2014;19(7):1117. doi:10.2741/4271.
20. Cech TR. Crawling out of the RNA World. Cell 2009; 136(4): 599-602. Doi.org/10.1016/jcell2009.02.0.
21. Wong JTF. Origin of genetically encoded protein synthesis: A model based on selection for RNA peptidation. Orig Life Evol Biosph. 1991;21(3):165-176. doi:10.1007/bf01809445.
22. Wong JTF. A Co-Evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1975;72(5):1909-1912. doi:10.1073/pnas.72.5.1909.
23. Wong JTF. Coevolution of genetic code and amino acid biosynthesis. Trends Biochem Sci. 1981;6:33-36. doi:10.1016/0968-0004(81)90013-x.
24. Pizzarello S. Meteorites and the chemistry that preceded life’s origin. In: Wong JTF, Lazcano A, eds. Prebiotic Evolution and Astrobiology. CRC Press; 2009:46-51. http://dx.doi.org/10.1201/9781498713986.
25. Kobayashi K, Kaneko T, Saito T, Oshima T. Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph. 1998;28(2):155-165. doi:10.1023/a:1006561217063.
26. Wong JTF, Bronskill PM. Inadequancy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol 1979; 13: 115-125.
27. Wong JTF. Membership mutation of the genetic code: loss of fitness by tryptophan. Proc Natl Acad Sci U S A. 1983; 80(20):6303-06. doi:10.1073/pnas.80.20.6303.
28. Mat WK, Xue H, Wong JTF. Genetic code mutations: The breaking of a three billion year invariance. PLoS ONE. 2010;5(8):e12206. doi:10.1371/journal.pone.0012206.
29. Wong JTF, Xue H. Synthetic genetic codes as the basis of synthetic life. In Chemical Synthetic Biology, Luisi PL, Chiarabelli C.eds. Wiley, New York2010; pp.178-199.
30. Hoesl MG, Budisa N. In vivo incorporation of multiple noncanonical amino acids into proteins. Angew Chemie Intern Ed 2011; doi.org/10.1002/anie.201005680.
31. Merkel L, Schauer M, Budisa N. et al. Parallel incorporation of different fluorinated amino acids: On the way to“Teflon” like proteins. ChemBioChem. 2010;11(11):1505-1507. doi:10.1002/cbic.201000295.
32. Thyer R, Shroff R, Klein DR, et al. Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nat Biotechnol. 2018;36(7):624-631. doi:10.1038/nbt.4154.
33. Kwok Y, Wong JTF. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem. 1980;58(3):213-218. doi:10.1139/080-029.
34. Furter R. Expansion of the genetic code: Site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci. 1998;7(2):419-426. doi:10.1002/pro.5560070223
35. Santoro SW, Anderson JC, Schultz PG et al. An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Nucleic Acids Res. 2003;31(23):6700-6709. doi:10.1093/nar/gkg903.
36. Italia JS, Addy PS, Erickson SB et al. Mutually orthogonal nonsense -suppression systems for precise protein labelling at up to three distinct sites. J Am Chem Soc 2019; 141: 6204-6212.
37. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Church GM et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 2011; 333: 348-353.
38. Lummis SCR, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel, Nature 2005; 438: 248-252.
Doi: 10.1038/nature04130.
39. Bryson DI, Fan C, Guo LT, Miller C, Söll D, Liu DR. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol. 2017;13(12):1253-1260. doi:10.1038/nchembio.
40. Xue H, Wong JTF. Future of the genetic code. Life. 2017;7(1):10. doi:10.3390/life7010010.
41. Xi Z, Davis L, Baxter K, Tynan A, Goutou A, Greiss S. Using a quadruplet codon to expand the genetic code of an animal. Nucleic Acids Res. 2021;50(9):4801-4812. doi:10.1093/nar/gkab1168.
42. Mukai T, Hayashi A, Iraha F, et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 2010;38(22):8188-8195. doi:10.1093/nar/gkq707
43. Marlière P, Patrouix J, Döring V, et al. Chemical evolution of a bacterium’s genome. Angew Chemie Int Ed. 2011;50(31):7109-7114. doi:10.1002/anie.201100535.
44. Zhang Y, Lamb BM, Romesberg FE et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc Natl Acad Sci U S A. 2017;114(6):1317-1322. doi:10.1073/pnas.1616443114.
45. Hoshika S, Leal NA, Benner S.A. et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. Science. 2019;363(6429):884-887. doi:10.1126/science.aat0971.
46. Dunkelmann DL, Oehm SB, Chin JW. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat Chem. 2021;13(11):1110-1117. doi:10.1038/s41557-021-00764-5
47. Axup JY, Bajjuri KM, Scultz PG et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Nat Acad Sci USA 2012; 109(40): 16101-16106.
48. Lu H, Zhou Q, Deshmukh V, et al. Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific antibody for immunotherapy of acute myeloid leukemia. Angew Chem Int Ed Engl. 2014;53(37):9841-9845. doi:10.1002/anie.201405353.
49. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451-5458. doi:10.4049/jimmunol.1490019.
50. Camacho RC, Zafian PT, Achanfuo-Yeboah J et al. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur J Pharmacol. 2013;715(1-3):41-45. doi:10.1016/j.ejphar.2013.06.023.
51. Bak M, Park J, Min K. et al. Recombinant peptide production platform coupled with site-specific albumin conjugation enables a convenient production of long-acting therapeutic peptide. Pharmaceutics. 2020;12 (4):364. doi:10.3390/pharmaceutics12040364.
52. Baumann T, Nickling JH, Bartholomae M, Budisa N et al. Prospects of In vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Front Microbiol. 2017;8:124. Published 2017 Feb 2. doi:10.3389/fmicb.2017.00124
53. Zamanian-Daryoush M, Gogonea V, DiDonato AJ, et al. Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-1 impairs cholesterol efflux activity and high-density lipoprotein biogenesis. J Biol Chem 2020;295(15):4836-4848. doi:10.1074/jbc.ra119.012092.s.
54. Wu L, Chen J, Wu Y, et al. Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. J Control Release. 2017;249:84-93. doi:10.1016/j.jconrel.2017.01.029.
55. Siverino C, Tabisz B, Lühmann T, et al. Site-Directed Immobilization of bone morphogenetic protein 2 to solid surfaces by click chemistry. J Vis Exp. 2018;(133):56616. Published 2018 Mar 29. doi:10.3791/56616.
56. Fredens J, Wang K, de la Torre D, et al. Total synthesis of Escherichia coli with a recoded genome. Nature. doi:10.1038/s41586-019-1192-5.
57. Richardson SM, Mitchell LA, Stracquadanio G, et al. Design of a synthetic yeast genome. Science. 2017;355(6329):1040-1044. doi:10.1126/science.aaf4557.
58. Brown W, Liu J, Deiters A. Genetic code expansion in animals. ACS Chem Biol. 2018;13(9):2375-2386. doi:10.1021/acschembio.8b00520.
59. Ernst RJ, Krogager TP, Maywood ES, et al. Genetic code expansion in the mouse brain. Nat Chem Biol. 2016;12(10):776-778. doi:10.1038/nchembio.2160.
60. Ellefson JW, Meyer AJ, Hughes RA, Cannon JR, Brodbelt JS, Ellington AD. Directed evolution of genetic parts and circuits by compartme-ntalized partnered replication. Nat Biotechnol. 2014;32(1):97-101. doi:10.1038/nbt.2714.
61. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR et al. Genomically recoded organisms expand biological functions. Science 2013; 342:357-360.
62. Robertson WE, Funke LFH, de la Torre D, et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science. 2021;372(6546):1057-1062. doi:10.1126/science.abg3029.
63. Liu J, Hemphill J, Samanta S, Tsang M, Deiters A. Genetic code expansion in zebrafish embryos and its application to optical control of cell signaling. J Am Chem Soc. 2017;139(27):9100-9103. doi:10.1021/jacs.7b02145.
64. Mehl RA, Anderson JC, Santoro SW, et al. Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc. 2003;125(4):935-939. doi:10.1021/ja0284153.
65. Zhang MS, Brunner SF, Hueguenin-Dezot N, Liang AD et al. Biosynthesis and encoding of phosphothreonine through parallel selection and deepmsequencing. Nat Methods. 2017; 14(7): 729-736. Doi:101038/nmeth4302.
66. Chen Y, Tang J, Wang L, et al. Creation of bacterial cells with 5-hydroxytryptophan as a 21st amino acid building block. Chem. 2020;6(10):2717-2727. doi:10.1016/j.chempr.2020.07.013.
67. Schipp CJ, Ma Y, Al-Shameri A, et al. An engineered Escherichia coli strain with synthetic metabolism for in-cell production of translationally active methionine derivatives. Chembiochem. 2020;21(24):3525-3538. doi:10.1002/cbic.202000257.
68. Bakilan F, Armagan O, Ozgen M, Tascioglu F, Bolluk O, Alatas O. Effects of native type II collagen treatment on knee osteoarthritis: A randomized controlled trial. Eurasian J Med. 2016;48(2):95-101. doi:10.5152/eurasianjmed.2015.15030.
69. Wang X, Wang Y, Ling A, Shi Y et al. Rationales: photosynthesis of vascular plants in dim light. Front Plant Sci 2020; 11: 573881, doi: 10.3389/fpls.2020.573881.
70. Moldenhauer M, Tseng H-W, Kraskov A, Tavraz NN et al Parameterization of a single H-bond in Orange Carotenoid Protein by atomic mutation reveals principles of evolutionary design of complex chemical photosystems. Front Mol Biosci 2023; 10:1072606.
Doi: 10.3389/fmolb.2023.1072606.
71. Cai T, Sun H, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science. 2021;373(6562):1523-1527. doi:10.1126/science.abh4049.
72. Yu J, Huang L, Tang Q, Yu SB, Qi QY et al. Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water. Nature Catalysis 2023; doi. org/10.1038/s41929-023-00962-z.