Characterization of Extended Spectrum β-lactamase and AmpC Producing Organisms Isolated from a Third Level Hospital Patients in Dominican Republic

Main Article Content

Yori Jiménez Roque, MD, MSc David Paula De Luna, MD, MSc Silvia Calo, PhD Alfredo Mena Lora

Abstract

Extended-spectrum β-lactamases (ESBLs) producing Enterobacteriaceae have become a challenge for clinicians as they frequently show co-resistance to other antibiotic classes. AmpC-type β-lactamases (AmpCs), tend to be more difficult to treat as they could be induced during antibiotic therapy. To characterize ESBLs and AmpCs producing organisms, we collected clinical samples identified through MicroScan® as members of the Enterobacteriaceae family and ESBLs producers, following Clinical Laboratory Standards Institute indications, from January through March 2021, in a third level hospital in Santiago de Los Caballeros, Dominican Republic. Samples underwent manual confirmation via ESBL + AmpC screen discs kit (Liofichelm® srl, Italy) and a genotype analysis was done by DNA extraction for detection of specific genes related with ESBL ((blaSHV, blaTEM, blaCTX, and blaCMY-4) or AmpC (CIT, MOX, DHA and FOX) expression. 54 samples were confirmed as ESBL and/or AmpC producers with Escherichia coli as the most frequent (33/61%) followed by Klebsiella sp. (9/17%). blaCTX was detected in 29 (67%) isolates, followed by blaTEM (23/53%) and blaSHV (18 /40%) . Among the AmpC encoding genes, DHA and CIT gene pools were detected in 3 (7%) and 2 (5%) of the samples, respectively. Two or more genes were detected in 19 (44%) samples. All the AmpC genes were found in an isolate which already had, at least, two other β-lactamase encoding genes. In this cohort, ESBLs and AmpCs -producing organisms with multiple resistance genes were detected. Efforts to curb antibiotic availability and to establish antimicrobial stewardship programs are needed.

Article Details

How to Cite
ROQUE, Yori Jiménez et al. Characterization of Extended Spectrum β-lactamase and AmpC Producing Organisms Isolated from a Third Level Hospital Patients in Dominican Republic. Medical Research Archives, [S.l.], v. 11, n. 8, sep. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4344>. Date accessed: 13 may 2024. doi: https://doi.org/10.18103/mra.v11i8.4344.
Section
Research Articles

References

1. Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors [published correction appears in Nat Rev Microbiol. 2019 Jul;17(7):459] [published correction appears in Nat Rev Microbiol. 2019 Jul;17(7):459-460]. Nat Rev Microbiol. 2019;17(5):295–306. doi:10.1038/s41579-019-0159-8
2. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ; Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin Infect Dis. 2019;69(8):1446–1455. doi:10.1093/cid/ciz173
3. Zhang Z, Chen M, Yu Y, Pan S, Liu Y. Antimicrobial susceptibility among gram-positive and gram-negative blood-borne pathogens collected between 2012-2016 as part of the Tigecycline Evaluation and Surveillance Trial. Antimicrob Resist Infect Control. 2018;7:152. Published 2018 Dec 13. doi:10.1186/s13756-018-0441-y
4. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145–2155. doi:10.1093/jac/dkx146
5. Rensing KL, Abdallah HM, Koek A, et al. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrob Resist Infect Control. 2019;8:45. Published 2019 Feb 26. doi:10.1186/s13756-019-0494-6
6. Ribeiro TG, Novais Â, Rodrigues C, et al. Dynamics of clonal and plasmid backgrounds of Enterobacteriaceae producing acquired AmpC in Portuguese clinical settings over time. Int J Antimicrob Agents. 2019;53(5):650–656. doi:10.1016/j.ijantimicag.2019.03.013
7. Jones RN, Guzman-Blanco M, Gales AC, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis. 2013;17(6):672–681. doi:10.1016/j.bjid.2013.07.002
8. Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagn Microbiol Infect Dis. 2012;73(4):354–360. doi:10.1016/j.diagmicrobio.2012.04.007
9. Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis. 2014;18(4):421–433. doi:10.1016/j.bjid.2013.10.005
10. Rocha FR, Pinto VP, Barbosa FC. The Spread of CTX-M-Type Extended-Spectrum β-Lactamases in Brazil: A Systematic Review. Microb Drug Resist. 2016;22(4):301–311. doi:10.1089/mdr.2015.0180
11. Pavez M, Troncoso C, Osses I, et al. High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Braz J Infect Dis. 2019;23(2):102–110. doi:10.1016/j.bjid.2019.03.002
12. Martínez, P, Garzón D, Máttar S. CTX-M-producing Escherichia coli and Klebsiella pneumoniae isolated from community-acquired urinary tract infections in Valledupar, Colombia. Braz J Infect Dis. 2012;16:420-5.
13. De Luna et al. Antimicrobial resistance profiles of microorganisms isolated from hospitalized patients in Dominican Republic. Rev Panam Salud Publica 44, 2020;e36
14. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 27th ed. supplement M100. CLSI: Wayne, PA; 2017.
15. Dashti, A. et al. Heat Treatment of Bacteria: A Simple Method of DNA Extraction for Molecular Techniques. Kuwait Medical Journal, 2009; 41 (2): 117-122
16. Sadegh, M et al. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among uropathogens of Pediatrics in North of Iran. BioMed Research International, Volume 2015, Article ID 309478
17. Pérez-Pérez & Hanson. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002 Jun;40(6):2153-62
18. Stapleton et al. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob Agents Chemother 1999 May;43(5):1206-10.
19. Castanheira et al. Variations in the Occurrence of Resistance Phenotypes and Carbapenemase Genes Among Enterobacteriaceae Isolates in 20 Years of the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis 2019 Mar 15;6(Suppl 1):S23-S33.
20. Kazmierczak KM, Lob SH, Hoban DJ, Hackel MA, Badal RE, Bouchillon SK. Characterization of extended-spectrum beta-lactamases and antimicrobial resistance of Klebsiella pneumoniae in intra-abdominal infection isolates in Latin America, 2008-2012. Results of the Study for Monitoring Antimicrobial Resistance Trends. Diagn Microbiol Infect Dis. 2015;82(3):209‐214
21. Gundran, R.S., Cardenio, P.A., Villanueva, M.A. et al. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res 15, 227 (2019)
22. Tiantian Tian, Shiting Dai, Dejun Liu, Yang Wang, Wei Qiao, Min Yang, Yu Zhang, Occurrence and transfer characteristics of blaCTX-M genes among Escherichia coli in anaerobic digestion systems treating swine waste, Science of The Total Environment, Volume 834, 2022, 155321, ISSN 0048-9697
23. Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomedica. 2019;39(s1):199‐220. Published 2019 May 1. doi:10.7705/biomedica.v39i3.4351
24. Galvis Serrano & Moreno. Caracterización molecular y detección de genes blaCTX-M grupos 1 y 9 en Klebsiella pneumoniae resistentes a ceftazidima, en un hospital de San José de Cúcuta, Colombia. rci Vol 36, núm 3 (2019)
25. Rada AM, Hernández-Gómez C, Restrepo E, Villegas MV. Distribution and molecular characterization of beta-lactamases in Gram-negative bacteria in Colombia, 2001-2016. 24.
26. Bush, K; Jacoby, G; Medeiros, A. A Functional Classification Scheme for β-Lactamases and Its Correlation with Molecular Structure. Antimicrobial Agents and Chemotherapy, p.1211-1233, June 1995
27. Alonso N, Miró E, Pascual V, et al. Molecular characterisation of acquired and overproduced chromosomal blaAmpC in Escherichia coli clinical isolates. Int J Antimicrob Agents. 2016;47(1):62‐68. doi:10.1016/j.ijantimicag.2015.10.007
28. Martínez-Martínez L, Calvo J. El problema creciente de la resistencia antibiótica en bacilos gramnegativos: situación actual. Enferm Infecc Microbiol Clin. 2010;28:25–31.
29. Shbaklo et al. An Observational Study of MDR Hospital-Acquired Infections and Antibiotic Use during COVID-19 Pandemic: A Call for Antimicrobial Stewardship Programs. Antibiotics (Basel) 2022 May; 11(5): 695.
30. Jia et al. The Attributable Direct Medical Cost of Healthcare Associated Infection Caused by Multidrug Resistance Organisms in 68 Hospitals of China. Biomed Res Int. 2019; 2019: 7634528.