Single Spot Albumin to Creatinine Ratio as An Independent Predictor of 12 Years Follow-Up Mortality in Acute Coronary Syndromes without ST-Segment Elevation

Main Article Content

Claudio C. Higa Fedor A. Novo Maria J. Gambarte Maria Sol Donato Eugenio Korolov Rocío Montoya Jorge Sebastian Castro Ortega

Abstract

Background: Up to date there is no evidence of the association between      microalbuminuria, measured as single spot urine albumin to creatinine ratio (ACR), with very long-term mortality in patients with non-ST segment Elevation Acute Coronary Syndromes.


Aim: To evaluate the association between admission ACR and very long-term all-cause mortality in an unselected cohort of non-ST-segment elevation acute coronary syndromes patients.


Methods: A prospective cohort study was conducted, including patients with non-ST-segment elevation acute coronary syndromes admitted in the Intensive Care Unit. The ACR was determined in spontaneous urine samples during the first 24 hours after admission and analyzed by immunoturbidimetry. The primary endpoint was all-cause mortality during the follow-up. Actuarial survival curves were compared by log rank test and a logistical Cox regression analysis was performed to identify variables independently associated with mortality in the follow-up. Statistics were calculated using the IBM Statistics program SPSS version 26. 


Results: 600 patients were analyzed. The overall average ACR value was 7 mg/gr (95% CI 4-26). 76% had normoalbuminuria (ACR 0-30 mg/gr), 22% had microalbuminuria (ACR 30-300 mg/gr), and 1.5% had macroalbuminuria (ACR > 300 mg/gr). The median and interquartile range of follow-up was 12 years (95% IC 11-14). The average ACR among those who met the primary endpoint was 59.15 mg/gr (95% CI 52-66) and among the survivors, 27.66 mg/gr (95 % CI 63-77), p > 0,003. ACR terciles were defined by 33th and 66th percentiles: tercile 1: patients with ACR of 0 to 4 mg/gr, tercile 2: ACR from 4 to 17 mg/g and tercile 3 values greater than 17mg/gr. Strong associations were observed between ACR with age, hypertension, stroke and history of COPD, previous use of angiotensin II converter/blocking enzyme inhibitors, systolic blood pressure at admission, ST segment deviation, left ventricle ejection fraction and elevation of serum Troponin T and CPK MB.  All cause-mortality during the follow-up was 14% (CI 95% 11-17). Elevation of ACR was significantly associated with long term mortality risk: log rank test chi square: 133.936, p = 0.0001. By multivariate Cox regression analysis adjusted by age, gender, diabetes, hypertension, serum creatinine, troponin T elevation, ST segment deviation, previous AMI, prior use of aspirin, statins and percutaneous coronary intervention after hospitalization, the ACR was independently associated with a 12-year follow-up mortality: OR 13 (95% IC 5-35; p < 0.0001). 


Conclusion: Single spot urine ACR at admission is a strong predictor of 12-year follow-up mortality in an unselected cohort of patients with non-ST-segment elevation acute coronary syndromes.

Keywords: microalbuminuria, acute coronary syndrome, prognosis, follow-up study

Article Details

How to Cite
HIGA, Claudio C. et al. Single Spot Albumin to Creatinine Ratio as An Independent Predictor of 12 Years Follow-Up Mortality in Acute Coronary Syndromes without ST-Segment Elevation. Medical Research Archives, [S.l.], v. 11, n. 9, oct. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4378>. Date accessed: 20 jan. 2025. doi: https://doi.org/10.18103/mra.v11i9.4378.
Section
Research Articles

References

1. World Health Organization. The Top Causes of Death. Available at:
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
2. Roffi M, Patrono C, Collet JP et al ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-seg¬ment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Pre¬senting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016 Jan 14;37(3):267-315. doi: 10.1093/eurheartj/ehv320. Epub 2015 Aug 29. PMID: 26320110.
3. Reriani MK, Lerman LO, Lerman A. Endothelial function as a functional expression of cardio-vascular risk factors. Biomark Med. 2010 Jun;4(3):351-60. doi: 10.2217/bmm.10.61. PMID: 20550469; PMCID: PMC2911781
4. Gimbrone MA Jr, García-Cardeña G. Endothe¬lial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016 Feb 19;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301. PMID: 26892962; PMCID: PMC4762052Granger CB, Goldberg RJ, Dabbous O et al.; for the Global Registry of Acute Coronary Events In-vestigators. Predictors of hospital morbidity in the global registry of acute coronary events. Arch Intern Med, 2003; 163: 2345–2353
5. Basha BJ, Sowers JR. Atherosclerosis: an up-date. Am Heart J. 1996 Jun;131(6):1192-202. doi: 10.1016/s0002-8703(96)90096-4. PMID: 8644600
6. Ibanez B, James S, Agewall S, Antunes MJ, Buc¬ciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kas¬trati A, Lenzen MJ, Prescott E, Roffi M, Valgim¬igli M, Varenhorst C, Vranckx P, Widimský P; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myo¬cardial infarction in patients presenting with ST-segment elevation: The Task Force for the man¬agement of acute myocardial infarction in pa¬tients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018 Jan 7;39(2):119-177. doi: 10.1093/eurheartj/ehx393.
PMID: 28886621.
7. Granger CB, Goldberg RJ, Dabbous O et al.; for the Global Registry of Acute Coronary Events Investigators. Predictors of hospital mor-bidity in the global registry of acute coronary events. Arch Intern Med, 2003; 163: 2345–2353
8. Bhatt D L, Lopes R D, Harrington R A (2022). Diagnosis and treatment of acute coronary syn¬dromes: A review. JAMA: The Journal of the American Medical Association, 327(7), 662. https://doi.org/10.1001/jama.2022.0358
9. Collet, JP, Thiele H, Barbato E et al. ESC Guide¬lines for the management of acute coronary syndromes in patients presenting without persis¬tent ST-segment elevation. European Heart Journal, 42(14), 1289–1367. https://doi.org/10.1093/eurheartj/ehaa575
10. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria re¬flects under-spread vascular damage: the steno hypothesis. Diabetologia, 1989; 32: 219–226
11. Liu H, Zhang J, Yu J, Li D et al. Prognostic value of serum albumin-to-creatinine ratio in patients with acute myocardial infarction: Results from the retrospective evaluation of acute chest pain study. Medicine, 99(35), e22049. https://doi.org/10.1097/MD.0000000000022049
12. Jensen JS, Clausen P, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B. Detecting microalbuminu¬ria by urinary albumin/keratinize concentration ratio. Nephrol Dial Transplant, 1997; 12S2: 6–9.
13. Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease morbidity associ¬ated with microalbuminuria and gross pro¬teinuria in persons with older-onset diabetes mellitus. Arch Intern Med, 2000; 160: 1093–1100.
14. Dogra G, Rich L, Stanton K, Watts Parving H. Microalbuminuria in essential hypertension and diabetes. J Hypertens, 1996; 14: S89–S94.
15. Estacio RO, Dale RA, Schrier R, Krantz MJ. Re-lation of reduction in urinary albumin excretion to ten-year cardiovascular mortality in patients with type 2 diabetes and systemic hyperten¬sion. Am J Cardiol, 2012; 109: 1743–1748.
16. Horner P. Fliser D, Klimm HP, Ritz E. Albuminuria in normotensive and hypertensive attending of¬fices of general practitioners. J Hypertens, 1995; 14: 655–660
17. Janssen WM, de Jong PE, de Zeeuw D. Hyper-tension and renal disease: role of microalbumi-nuria. J Hypertens Suppl. 1996 Dec;14(5):S173-7. PMID: 9120675.
18. Marre M. Microalbuminuria and prevention of renal insufficiency and cardiovascular diseases. Am J Hypertens. 1998 Jul;11(7):884-6. doi: 10.1016/s0895-7061(98)00077-6. PMID: 9683055.
19. Zhang Y, Yang J, Zheng M et al. Clinical char-acteristics and predictive factors of subclinical diabetic nephropathy. Exp Clin Endocrinol Dia¬betes. 2015 Feb;123(2):132-8. doi: 10.1055/s-0034-1396810. Epub 2015 Jan 21. PMID: 25607340.
20. Heart Outcomes Prevention Evaluation Study In¬vestigators. Effects of ramipril on cardiovascu¬lar and microvascular outcomes in people with diabetes mellitus: Results of the HOPE study and MICRO HOPE sub-study. Lancet, 2000; 355: 253–259.
21. Gosling P, Hughes EA, Reynolds JP, Fox JP. Mi¬croalbuminuria is an early response following acute myocardial infarction. Eur Heart J, 1991; 12: 508–513.
22. Taskiran M, Feldt-Rasmussen B, Jensen GB, Jen¬sen JS. Urinary albumin excretion in hospital¬ized patients with acute myocardial infarction. Prevalence of microalbuminuria and correlation to left ventricle wall thickness. Scand Cardio¬vasc J, 1998; 32: 163–166.
23. Berton G, Citro T, Palmieri R, Petucco S, De Toni R, Palatini P. Albumin excretion rate increases during acute myocardial infarction and strongly predicts early mortality. Circulation, 1997; 96: 3338–3345
24. Berton R, Cordiano R, Palmieri F, Cucchini R, De Toni R, Palatini P. Microalbuminuria during acute myocardial infarction. A strong predictor for 1-year morbidity G. Eur Heart J, 2001; 22: 1466–1475.
25. Turkyilmaz, E, Ozkalayci F, Birdal O et al. Se-rum albumin to creatinine ratio and short-term clinical outcomes in patients with ST-elevation myocardial infarction. Angiology, 73(9), 809–817. https://doi.org/10.1177/00033197221089423.
26. Bandyopadhyay SK, Ghosh S, Bandyopadh-yay R, Ghosh S, Sarkar N (2010) Microalbumi¬nuria: a predictor of 7-day mortality in acute myocardial infarction. J Indian Med Assoc 108:826–828
27. Higa CC, Novo FA, Nogues I et al. Single spot albumin to creatinine ratio: A simple marker of long-term prognosis in non-ST segment eleva-tion acute coronary syndromes. Cardiol J. 2016;23(3):236-41. doi: 10.5603/CJ.a2015.0075. Epub 2015 Oct 27. PMID: 26503079.
28. Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Re-definition of Myocardial Infarction. Universal definition of myocardial
29. infarction. J Am Coll Cardiol. 2007 Nov 27;50(22):2173-95. doi:
30. 10.1016/j.jacc.2007.09.011. PMID: 18036459.
31. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined --a consensus document of The Joint European Society of Car¬diology/American College of Cardiology Com¬mittee for the redefinition of myocardial infarc¬tion. J Am Coll Cardiol. 2000 Sep;36(3):959-69. doi: 10.1016/s0735-1097(00)00804-4
32. Åkerblom A, Clare RM, Lokhnygina Y, Wallen-tin L, Held C, Van de Werf F, Moliterno DJ, Pa¬tel UD, Leonardi S, Armstrong PW, Harrington RA, White HD, Aylward PE, Mahaffey KW, Tri¬coci P. Albuminuria and cardiovascular events in patients with acute coronary syndromes: Re¬sults from the TRACER trial. Am Heart J. 2016 Aug;178:1-8. doi: 10.1016/j.ahj.2016.04.013. Epub 2016 Apr 27. PMID: 27502846.
33. Mahmoud HT, Berton G, Cordiano R, Palmieri R, Petucco S, Bagato F. Microalbuminuria during acute coronary syndrome: Association with 22-year mortality and causes of death. The ABC-8* study on heart disease. (*ABC is an acronym for Adria, Bassano, Conegliano, and Padova Hospitals). Int J Cardiol. 2023 Mar 1;374:100-107. doi: 10.1016/j.ijcard.2022.12.025. Epub 2022 Dec 16. PMID: 36535560.
34. Nazer B, Ray KK, Murphy SA, Gibson CM, Can¬non CP. Urinary albumin concentration and long-term cardiovascular risk in acute coronary syndrome patients: a PROVE IT-TIMI 22 substudy. J Thromb Thrombolysis. 2013 Oct;36(3):233-9. doi: 10.1007/s11239-012-0853-0. PMID: 23212806.
35. Korolov Y, Nogués I, Gambarte MJ et al. Mi-croalbuminuria predicts contrast-induced nephropathy in patients with acute coronary syndrome.REC Interv Cardiol. 2021;3:21-25. DOI: https://doi.org/10.24875/RECICE.M20000139
36. Tziakas D, Chalikias G, Kareli D et al. Spot urine albumin to creatinine ratio outperforms novel acute kidney injury biomarkers in patients with acute myocardial infarction. Int J Cardiol. 2015 Oct 15;197:48-55. doi: 10.1016/j.ijcard.2015.06.019. Epub 2015 Jun 18. PMID: 26113474.
37. Meng H, Wu P, Zhao Y et al. Microalbuminuria in patients with preserved renal function as a risk factor for contrast-Induced acute kidney in¬jury following invasive coronary angiography. Eur J Radiol. 2016 Jun;85(6):1063-7. doi: 10.1016/j.ejrad.2016.03.010. Epub 2016 Mar 16. PMID: 27161053.
38. Hebert LA, Spetie DN, Keane WF. The urgent call of albuminuria/proteinuria. Heeding its sig¬nificance in early detection of kidney disease. Postgrad Med. 2001 Oct;110(4):79-82, 87-8, 93-6. doi: 10.3810/pgm.2001.10.1047. Erra¬tum in: Postgrad Med 2002 Feb;111(2):23. PMID: 11675984.
39. Bolisetty S, Agarwal A. Urine albumin as a bi-omarker in acute kidney injury. Am J Physiol Re¬nal Physiol. 2011 Mar;300(3):F626-7. doi: 10.1152/ajprenal.00004.2011. Epub 2011 Jan 12. PMID: 21228105; PMCID: PMC3064133.
40. Lazzeri C, Valente S, Chiostri M, Picariello C, Attanà P, Gensini GF. Microalbuminuria in non-diabetic STEMI: an independent predictor for acute kidney injury. Scand Cardiovasc J. 2012 Dec;46(6):324-9. doi: 10.3109/14017431.2012.702919. Epub 2012 Jul 10. PMID: 22694718.
41. Yildiz E, Köse M, Yürüyen G et al. Relationship between brain natriuretic peptide, microalbu-minuria, and contrast- induced nephropathy in patients with acute coronary syndrome. Anadolu Kardiyol Derg. 2014 Sep;14(6):505-10. doi: 10.5152/akd.2014.4931. PMID: 25233496.
42. Hong YJ, Jeong MH, Choi YH et al. Relationship between microalbuminuria and vulnerable plaque components in patients with acute coro¬nary syndrome and with diabetes mellitus. Vir¬tual histology-intravascular ultrasound. Circ J. 2011;75(12):2893-901.
43. Jadhav UM, Kadam NN. Association of micro-albuminuria with carotid intima-
44. media thickness and coronary artery disease--a cross-sectional study in Western India. J Assoc Physicians India. 2002 Sep;50:1124-9. PMID: 12516693.
45. Neri S, Bruno CM, Leotta C, D’Amico RA, Pennisi G, Ierna D. Early endothelial alterations in type 2 diabetes. Int J Clin Lab Res, 1998; 28: 100–103
46. Jager A, van Hinsbergh VW, Kostense PJ et al. Increased levels of soluble vascular adhesion molecule 1 are associated with risk of cardio-vascular morbidity on type 2 diabetes: The Hoorn Study. Diabetes, 2000; 49: 485–491.
47. Koga M, Otsuki M, Kubo M, Hashimoto J, Ka-sayama S. Relationship between circulating vascular cell adhesion molecule-1 and micro-vascular complications in type 2 diabetes melli¬tus. Diabet Med, 1998; 15: 661–667.
48. Fasching P, Veitl M, Rohac M et al. Elevated concentrations of circulating adhesion molecules and their association with microvascular compli¬cations in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab, 1996; 81: 4313–4317.
49. Jin L, Cai S, Qian J et al. Poor recovery of car¬diac function in myocardial infarction patients with metabolic syndrome and microalbuminuria. Herz. 2021 Apr;46(Suppl 1):135-140. English. Doi: 10.1007/s00059-020-04918-y. Epub 2020 May 11. PMID: 32394020.
50. Arcaro G, Zenere BM, Saggiani F et al. ACE inhibitors have recently been shown to improve endothelial function in type 1 diabetic patients with normal arterial pressure and microalbumi¬nuria. Diabetes Care, 1999; 22: 1536.
51. Parving HH, Lehnert CE, Brochner-Mortensen J, Gomis R, Andersen S, Arer P. The effect of iber¬sartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl Med, 2001; 345: 870–878.
52. Jongs N, Greene T, Chertow GM et al. DAPA-CKD Trial Committees and Investigators. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes En¬docrinol. 2021 Nov;9(11):755-766. doi: 10.1016/S2213-8587(21)00243-6. Epub 2021 Oct 4. PMID: 34619106.
53. Ferreira JP, Zannad F, Butler J et al. Association of Empagliflozin Treatment With Albuminuria Levels in Patients With Heart Failure: A Second¬ary Analysis of EMPEROR-Pooled. JAMA Car¬diol. 2022 Nov 1;7(11):1148-1159. doi:10.1001/jamacardio.2022.2924. Erratum in: JAMA Cardiol. 2022 Nov 1;7(11):1177.PMID: 36129693; PMCID: PMC9494272.
54. Heerspink HJL, Chertow GM, Jongs N et al. DAPA-CKD Trial Committee and Investigators. Effects ofDapagliflozin in People without Dia-betes and with Microalbuminuria. Clin J AmSoc Nephrol. 2022 Nov;17(11):1665-1668. doi: 10.2215/CJN.07290622. Epub 2022 Sep 9. PMID: 36344217; PMCID: PMC9718033.
55. Cherney DZI, Zinman B, Inzucchi SE et al. Effects of empagliflozin on the urinary albumin-to-cre¬atinine ratio in patients with type 2 diabetes and established cardiovascular disease: an ex¬ploratory analysis from the EMPA-REG OUT¬COME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017 Aug;5(8):610-621. doi:10.1016/S2213-8587(17)30182-1. Epub 2017 Jun 27. PMID: 28666775.
56. Miyamoto S, Heerspink HJL, de Zeeuw D et al. CANPIONE study Investigators. Rationale, de-sign and baseline characteristics of the effect of canagliflozin in patients with type 2 diabetes and microalbuminuria in the Japanese popula¬tion: The CANPIONE study. Diabetes Obes Metab. 2022 Aug;24(8):1429-1438. doi: 10.1111/dom.14731. Epub 2022 May 18. PMID: 35491532; PMCID: PMC9545385.
57. Cherney D, Lund SS, Perkins BA et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 dia¬betes. Diabetologia. 2016 Sep;59(9):1860-70. doi: 10.1007/s00125-016-4008-2. Epub 2016 Jun 17. PMID: 27316632.
58. Hussein N, Abdelrahman F, Khedr A, Aref H, Halawa MR, ELSharkawy M. Value of Sodium-Glucose Co-Transporter 2 Inhibitor Versus Tra-ditional Medication in Microalbuminuric Dia-betic Patients. Curr Diabetes Rev. 2021;17(6):e101120187809.doi: 10.2174/1573399816999201110194413. PMID: 33176660.
59. Gunhan HG, Imre E, Erel P, Ustay O. Empagli-flozin is more effective in reducing microalbu-minuria and alt levels compared with dapagli-flozin: real life experience. Acta Endocrinol (Bu¬char). 2020 Jan-Mar;16(1):59-67. doi: 10.4183/aeb.2020.59. PMID: 32685040; PMCID: PMC7364004.