Lipoproteins were not created by nature to cause atherosclerosis. Endogenous lipoprotein metabolism. A contemporaneous and comprehensive review for the clinician.

Main Article Content

Enrique C. Morales-Villegas, MD Yulino Castillo-Núñez, MD Juan José Badimon, MD

Abstract

Aim and scope: This review is intended to update the knowledge, but above all, to understand the difference between "normal" level vs. biological level of LDL cholesterol (LDL-C) and the physiology of the metabolism of lipoproteins with apoprotein B100 (LP-apoB100). Such medical knowledge is fundamental before introducing to the world of dyslipidemia, atherosclerosis, and pharmacotherapeutics.


 


Unfortunately, the teaching of the enunciated concepts -as a starting point for basic knowledge- is frequently mixed with multiple related topics, among them: the pathophysiology analysis of LP-apoB100 metabolism, that is, of dyslipidemias; the description of transgenic animal models for their study; Mendelian randomization studies of the correlation between certain genetic patterns or single nucleotide polymorphism with specific dyslipidemias and atherosclerotic cardiovascular disease (ASCVD), the study at different levels of atherosclerosis -main consequence of the abnormal metabolism of LP-apoB100- and finally, the treatment of atherogenic dyslipidemias, atherosclerosis, and ASCVD.


 


Hence, teaching these concepts is complex, and therefore, also the learning by the non-specialist physician of these priority chapters in modern medicine. This review is premised on the following sentence: “LP-apoB100 were not created by nature to cause atherosclerosis”.


 


In this contemporary review we will analyze current knowledge on: the physiological value of LP-apoB100 with an emphasis on LDL, metabolism of LP-apoB100 (assembly and secretion of VLDL by the hepatocyte, circulatory transformation of VLDL to IDL, circulatory/hepatic transformation of IDL to LDL and hepatobiliary elimination of LDL) and finally LDL oxidation and elimination by reverse transport.


 


As Goldstein and Brown anticipated in the 1970s: "only by understanding the metabolism of LP-apoB100 will we be able to develop drugs to treat hypercholesterolemia and reduce its implicit atherosclerotic cardiovascular risk."

Keywords: Lipoproteins, atherosclerosis, Endogenous lipoprotein metabolism, review for the clinician

Article Details

How to Cite
MORALES-VILLEGAS, Enrique C.; CASTILLO-NÚÑEZ, Yulino; BADIMON, Juan José. Lipoproteins were not created by nature to cause atherosclerosis. Endogenous lipoprotein metabolism. A contemporaneous and comprehensive review for the clinician.. Medical Research Archives, [S.l.], v. 11, n. 9, oct. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4387>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i9.4387.
Section
Review Articles

References

1. Goldstein JL, Brown MS. Lipoprotein receptors: genetic defense against atherosclerosis. Clin Res. 1982; 30:417-426.

2. Mills GL, Taylaur CE. The distribution and composition of serum lipoproteins in eighteen animals. Comp Biochem Physiol. 1971; 40B:489-501.

3. Calvert GD. Mammalians low density lipoproteins. In Day CE, Levy RS (eds). Low Density Lipoproteins. New York. Plenum Press. 1976: pp 281-319.

4. Kwiterovich PO Jr, Levy RI, Fredrickson DS. Neonatal diagnosis of familial type-II hyperlipoproteinemia. Lancet. 1973: i: 118-122.

5. Keys A. Coronary heart disease: the global picture. Atherosclerosis. 1975; 22:149-192.

6. Reichl D, Myant NB, Brown MS et al. Biologically active low-density lipoprotein in human peripheral lymph. J Clin Invest. 1978; 61:64-71.

7. Bilheimer DW, Stone NJ, Grundy SM. Metabolic studies in familial hypercholesterolemia: evidence for a gene-dosage effect in vivo. J Clin Invest. 1979; 64:524-533.

8. Kovanen PT, Bilheimer DW, Goldstein JL et al. Regulatory role for hepatic low lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci USA. 1981; 78:1194-1198.

9. Cohen J, Pertsemlidis A, Kotowski IK/Hobbs HH et al. Low LDL cholesterol in subjects of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genetics. 2005; 37:161-165

10. Cohen J, Boerwinkle E, Mosley TH and Hobbs HH y cols. Sequence variations in PCSK9, Low LDL and Protection against Coronary Heart Disease. N Engl J Med. 2006; 354:1264-1272.

11. Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation. 2008; 118:672-677.

12. Steinberg D, Witztum JL. History of discovery. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010; 30:2311-2316.

13. APOB apolipoprotein B [Homo sapiens (human)] - Gene - NCBI (nih.gov)

14. Borén J, Taskinen MR, Björson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nature Reviews Cardiology. DOI: 10.1038/s41569-022-00676-y.

15. Duran EK, Pradhan AD. Triglyceride-rich lipoprotein remnants and cardiovascular disease. Clin Chem. 2021; 67:183-287.

16. Ginsberg HN, Packard CJ, Chapman MJ et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021; 00:1-21. DOI: 10.1093/eurheartj/ehab551.

17. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2022; 41:99-109. DOI: 10.1093/eurheartj /ehz785.

18. ACAT2 acetyl-CoA acetyltransferase 2 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

19. MTTP microsomal triglyceride transfer protein [Homo sapiens (human)] - Gene - NCBI (nih.gov).

20. APOE apolipoprotein E [Homo sapiens (human)] - Gene - NCBI (nih.gov).

21. APOC1 apolipoprotein C1 [Homo sapiens (human)] - Gene - NCBI (nih.gov)

22. Rouland A, Masson D, Lagrost L et al. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a Systematic review. Cardiovasc Diabetol. 2022; 21:272. DOI: 10.1186/s12933-022-01703-5.

23. APOC2 apolipoprotein C2 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

24. APOC3 apolipoprotein C3 [Homo sapiens (human)] - Gene - NCBI (nih.gov),

25. LPL lipoprotein lipase [Homo sapiens (human)] - Gene - NCBI (nih.gov)

26. Basu D, Goldberg IJ. Regulation of lipoprotein lipase mediated lipolysis of triglycerides. Curr Opin Lipidol. 2020; 31:154-160. DOI: 10.1097/MOL-0000000000000676.

27. APOA5 apolipoprotein A5 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

28. Sylvers-Davie KL and Davies BSJ. Regulation of lipoprotein metabolism by ANGPL3, ANGPL4, and ANGPL8. Am J Physiol Endocrinol Metab. 2021; 321; E493-508. DOI: 10.1152/ajpendo.00195.2021.

29. Ginsberg HN and Goldberg IJ. Broadening the scope on dyslipidemia therapy by targeting APOC3 and ANGPL3. Arterioscler Thromb Vasc Biol. 2023; 43:00-00. DOI: 10.1161/ATVBAHA.122.317966.

30. ANGPTL3 angiopoietin like 3 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

31. Adam RC, Mintah IJ, Alexa-Braun CA et al. Angiopoyetin-like 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res. 2020; 61:1271-1286.

32. Wu L, Soundarapandian MM, Castoreno AB et al. LDL-cholesterol reduction by ANGPL3 inhibition in mice is dependent on endothelial lipase. Circulation Res. 2020; 127:1112-1114. DOI: 10.1161/CIRCRESAHA.120.317128.

33. ANGPTL4 angiopoietin like 4 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

34. ANGPTL8 angiopoietin like 8 [Homo sapiens (human)] - Gene - NCBI (nih.gov),

35. Zhang R. The ANGPL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol. 2016; 6:150272. DOI: 10.1098/rsob.

36. LIPC lipase C, hepatic type [Homo sapiens (human)] - Gene - NCBI (nih.gov).

37. Goldstein JL, Brown MS. History of discovery. The LDL receptor. Arterioscler Thromb Vasc Biol. 2019; 29:431-438.

38. Brown MS, Goldstein JL. A Receptor-Mediated Pathway for Cholesterol Homeostasis. Nobel Lecture. 9 December 1985. Nobelprize.org.

39. Goldstein JL, Brown MS. Binding and degradation of low-density lipoproteins by cultured human fibroblasts: comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974; 249:5153-5162.

40. Endo A, Kuroda M and Tsujita Y. ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium Citrinum. J Antibiotics. 1976; 26:1346.

41. Endo A, Kuroda M and Tanzawa K. Competitive inhibitors of 3-hydroxy-3methylglutaryl coenzyme A reductase by ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS. 1976. Lett 72:323.

42. Tsujita Y, Kuroda M, Tanzawa K, Kitano N and Endo A. Hypocholesterolemic effects in dogs of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Atherosclerosis. 1979; 32:307.

43. Kuroda M, Tsujita, Tanzawa K and Endo A. Hypocholesterolemic effects in monkeys of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Lipids. 1979; 14:585.

44. Yamamoto A, Endo A, Kitano Y et al. Two Japanese kindred of familial hypercholesterolemia including homozygous cases. A report of cases and studies on serum lipoproteins and enzymes. Jap J Med. 1978; 17:230.

45. LDLR low density lipoprotein receptor [Homo sapiens (human)] - Gene - NCBI (nih.gov).

46.- HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase [Homo sapiens (human)] - Gene - NCBI (nih.gov).

47. Adams CM, Reitz J, DeBrabander JK et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanism, both involving SCAP and Insigns. J Biol Chem. 2004; 279:52772-52780.

48. Schneider WJ, Beisegel U, Goldstein JL et al. Purification of the low-density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem. 1982; 257: 2664-2673.

49. Yamamoto T, Davis CG, Brown MS et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984; 39:27-38.

50. Südhof TC, Goldstein JL, Brown MS et al. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985:228:815-822.

51. Kleber ME, Delgado GE, Márz W. LDL receptor traffic; in the fast lane. Eur J Cardiol. 2020; 41:1054-56. DOI: 10.1093/eurheartj/ ehz866.

52. LRP1 LDL receptor related protein 1 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

53. Seidah NG, Benjannet S, Wickham L et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003; 100:928-933.

54. Seidah NG, Prat A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med (Berl). 2007; 85:685-696.

55. PCSK9 proprotein convertase subtilisin/kexin type 9 [Homo sapiens (human)] - Gene - NCBI (nih.gov).

56. Morales-Villegas E. In Inhibiendo a la PCSK9. La era de los anticuerpos monoclonales. 1ª Edición 2016. Editorial Atheros-CIC. ISBN: 978-607-00-9678-5.

57. Lopez D. PCSK9: An enigmatic protease. Biochimica and Biophysica Acta. 2008; 1781: 184-191.

58. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012; 11:367-383.

59. Seidah NG, Sadr MS, Chrétien M et al. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J Biol Chem. 2013; 288:21473-21481.

60. Seidah NG, Awan Z, Chétien M and Mbikay M. PCSK9. A key modulator of cardiovascular health. Circulation Res. 2014. Published online: http//circres.ahajournals.org. DOI: 10.1161/CIRCRESAHA.114.301621.

61. Benjannet S, Rhainds D, Essalmani R et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low-density lipoprotein receptor and LDL-cholesterol. J Biol Chem. 2004; 279:48865-48875.

62. Zhang DM, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low-density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007; 282:18602-18612.

63. Tavori H, Fan D, Blakemore JL et al. Serum PCSK9 and cell surface LDL-R: Evidence for a reciprocal regulation. Circulation. 2013; 127: 2403-2413.

64. Jeong HJ, Lee HS, Kim KS et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008; 49:399-409.

65. Morales-Villegas E. PCSK9 and LDLR. The yin-yang in the cellular uptake of cholesterol. Curr Hyperten Rev. 2013; 9:310-323.

66. Nassoury N, Blasiole DA, Tebon Oler A et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic. 2007; 8:718-732.

67. Morales-Villegas E. In Endotelio, aterotrombosis y estatinas. 1ª Edición 2011. Editorial Atheros CIC. ISBN: 978-607-00-3781-8.

68. Morales-Villegas E. In Cardio-Lipidología. Lipidología con enfoque cardiovascular. 1ª Edición 2012. Editorial Atheros-CIC. ISBN: 978-607-00-5669-7.