Nutritional value of cane broth and nutraceutical potential of Caná – cane broth´s fermented drink
Main Article Content
Abstract
Brazil is the world's largest producer of sugarcane and its juice is used mainly for the production of sugar, fuel alcohol and industrial cachaça. To a lesser extent, thousands of producers cultivate sugarcane on a rural scale, for the production of alembic cachaça, brown sugar, rapadura and molasses. In recent years, however, these producers have been looking for options that, in addition to expanding the range of products, allow them to add more value to their properties and sugarcane fields. In this context, the feasibility of producing fermented sugarcane juice as a final drink, similar to grape wine, has been considered. The market potential of this beverage has been markedly expanded as a result of recent research, which proved the presence of phytoactive substances in sugarcane juice, such as apigenin, luteolin and asterin, among others. Continuing these works - which have already made it possible to scientifically support millenary practices related to the use of sugarcane juice in Ayuvedic medicine - is very important, both to reinforce the appreciation of sugarcane juice in the human diet and to enable the classification of the fermented sugarcane juice as a beverage with functional activity, following the example of the recognition already won by wines that come from the fermentation of grape juice. To contribute in this direction, an update is presented in the scope of the chemical composition of the sugarcane juice, highlighting the main phytoactives already characterized.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Maia AB. Tecnologia do caná: bebida fermentada da cana. 2022. Belo Horizonte, Páginas Ed. ISBN 978-65-5079-228-2. 118 p.
3. Almeida JMD, Novoa AV, Linares AF, Lajolo FM & Genovese MI. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods Human Nut 2006; 61: 187–192. http://dx.doi.org/ 10.1007/s11130-006-0032-6
4. Sultana B & Anwar F. Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 2008; 108: 879−888.
5. Abdelaziz KM, Cabrera MCG, Vina J & Borras EC. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev 2015; 837042. http://dx.doi.org/10.1155/2015/837042
6. Salehi B, Machin L, Monzote L, Rad JS, Ezzat SM, Salem MA, Merghany RM, Mahdy NM, Kiliç CS, Sytar O, Rad MM, Sharopov F, Martins N, Martorel LM & Cho WC. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 2020; 5 (20): 11849–11872. https://doi.org/10.1021/acsomega.0c01818
7. Pereira LFM, Ferreira VM, Oliveira NG, Sarmento PIVS; Teodoro E. Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An Acad Bras Cienc 2017; 89 (2). doi.org/10.1590/0001-3765201720160594
8. TACO – Tabela Brasileira de Composição de Alimentos. 2011. Campinas, cfn.org.br /wp-content/uploads/2017/03/taco_4_edicao_.pdf
9. IFCD Indian Food Composition Tables. Composition of sugarcane juice (Saccharum officinarum). In: food https://vikaspedia.in/health/nutrition/nutritive-value-of-foods/healing-effects-of-sugarcane-juice. 2017. doi-url: ifct2017.com/frame.php?page=home
10. Amerine MA & Thoukis G. The glucose-fructose ratio of California Grapes. Vitis 1958; 1:224-229. doi.org/10.5073/vitis.1958.1.224-229
11. Orak HH. Glucose and fructose contents of some important red grape varieties by HPLC. Asian J Chem 2009; 21(4): 3068-3072.
12. Anvisa (2005). Brasil. Res RDC n 269 de 22/09/ 2005. Aprova o Regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais”.
13. Iqbal A, Kamran H, Khalid S, Jabeen S. & Aslam M. Glycemic response of natural sweeteners like sugarcane juice, honey and jaggery in healthy individuals. EAS J Human Cult Studies 2020; 2 (5). doi:10.36349/easjhcs.2020.v02i05.006
14. Abasy M, Motobu M, Na KJ, Sameshina T, Koge K & Onodera T. Immunostimulating and growth promoting effects of sugarcane extracts (SCE) in chickens. J Vet Med Sci 2002; 64: 1061–1063.
15. Abasy M, Motobu M, Na KJ, Shimura K, Nakamura K & Koge K. Protective effect of sugarcane extracts (SCE) on Eimeria tenella infections in chickens. J Vet Med Sci 2003; 65: 865–871.
16. Akhtar M, Hafeez MA, Muhammad F & Haq AU. Immunomodulatory and protective effects of sugar cane juice in chickens against Eimeria Infection. Turkish J Vet Anim Sci 2008; 32(6): 463-467.
17. Amer S, Na KJ, Motobu M & Abasy M. Radioprotective effect of sugar cane extract in chickens. Phytot Res 2005; 19(6):496-500. doi:10.1002/ptr.1688
18. Awais MM, Akhtar M, Muhammad F, Haq AU & Anwar I. Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens. Exp Parasit 2011;128 (2):104-110. doi:10.1016/j.exppara.2011.02.024
19. Lo DY, Chen TH, Chien MS, Koge K, Hosono A & Kaminogawa S. Effects of sugarcane extract on modulation of immunity in pigs. J Vet Med Sci 2005; 67(6): 591–597.
20. Lo DY, Chien MS, Yeh KS, Koge K, Lin CC, Hsuan SL & Lee WC. Effects of sugar cane extract on pseudorabies virus challenge of pigs. J Vet Med Sci 2006; 68(3): 219-225. DOI: 10.1292/jvms.68.219.
21. Xia Y, Li Y, Shen X, Mizu M, Furuta T & Li, C. Effect of dietary supplementation with sugar cane extract on meat quality and oxidative stability in finishing pigs. Animal Nutr 2017; 3(3): 295-299. doi.org/10.1016/j.aninu.2017.05.002
22. Hussein YA. & Shafey RS. The possible protective effects of Saccharum officinarum l. (sugar cane) juice co-supplementation on gentamicin induced acute renal toxicity in adult albino rats. Int. J. Pharm. Toxicol 2019;7 (2): 29-34. doi.org/10.14419/ijpt.v7i2.29477
23. Lee SK, Mbwambo ZH, Chung H, Luyengi L, Gamez EJ, Mehta RG, Kinghorn AD & Pezzuto JM. Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1998; 1(1):35–46.
24. Yoshikava T, Toyokuni S, Yamamoto Y & Naito Y. Free radicals in chemistry, biology and medicine. OICA International London. 2000. doi:10.1093/acprof:oso/9780198717478.001.0001
25. Machado H, Nagem TJ, Peters VM, Fonseca CS & Oliveira TT. Flavonóides e seu potencial terapêutico. Bol Centro Bio l Reprod (Juiz de Fora) 2008; 27 (1/2): 33-39.
26. Abbas SR, Sabir SM, Ahmad SD, Boligon AA & Athayde ML. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem 2014; 147:10-16.
27. Singh A, Lal UR, Mukhtar HM, Singh OS, Shah G & Dhawan RK Perfil fitoquímico da cana-de-açúcar e seus potenciais aspectos à saúde. Pharmacogn Rev 2015; 9(17):45–54. doi: 10.4103 / 0973-7847.156340
28. Pimentel CVMB, Elias MF & Philippi ST. Alimentos funcionais e compostos bioativos. São Paulo, Manole. 2019. 963 p. ISBN-13: 978-8520453605
29. Kumar S & Pandey A.K. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 1: 16 doi:10.1155/2013/162750
30. Kiokias S, Proestos C & Oreopoulou V. Phenolic acids of plant origin—a review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 2020; 9(4) doi:10.3390/foods9040534
31. Takara K, Matsui D, Wada K, Ichiba T & Nakasone Y. New antioxidative phenolic glycosides isolated from Kokuto noncentrifuged cane sugar. Biosci Biotec Biochem 2002; 66: 29–35.
32. Almeida JMD, Novoa AV, Linares AF, Lajolo FM & Genovese MI. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods Human Nut. 2006; 61: 187–192. http://dx.doi.org/ 10.1007/s11130-006-0032-6
33. Kadam US, Ghosh SB, Strayo D & Suprasanna P. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem 2008; 106: 1154–1160.
34. Vila FC, Colombo R, Lira TO & Yariwake JH. HPLC microfractionation of flavones and antioxidant (radical scavenging) activity of Saccharum officinarum L. J Braz Chem Soc 2008; 19(5): 903-908.
35. Colombo R, Yariwake, JH, Queiroz EF & Hostettmann KN. On-line identification of minor flavones from sugarcane juice by lc/uv/ms and post-column derivatization. J Braz Chem Soc 2009; 20 (9). doi.org/10.1590/s0103-50532009000900003
36. Gülçin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol 2006; 217(2-3):213-20. doi: 10.1016/j.tox.2005.09.011
36. Galano A, Márquez MF & Idaboy JRA. Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys Chem Phys 2011; 13: 11199-11205. https://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp20722a
37. Kim JK & Park SU. Chlorogenic acid and its role in biological functions: an up to date. Excli J., 2019;18: 310-316. doi: 10.3390/molecules22030358
39. Espíndola KMM, Ferreira RG, Narvaez LMN, Rosario, ACRS, Silva AHM, Silva AGB, Vieira APO & Monteiro MC. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019; 9: 541. doi: 10.3389/fonc.2019.00541
40. Chen C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid Med Cell Longev. 2016. doi: 10.1155/2016/3571614
41. Jeyabal PV, Syed MB, Venkataraman M, Sambandham JK & Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA) induced hepatocellular carcinogenesis in Wistar albino rats. Mol. Carcinog. 2005; 44 (1): 11–20
42. Xu Z, Wang C, Yan H, Zhao Z, You L & Ho CT. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chem 2022; 30: 373. doi: 10.1016 / j.foodchem.2021.131396
43. Aguirre FO, García JR, Ruiz, NM, Robles, AC, Díaz, SM, Parrilla EA & Medrano AW. Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 2016; 21(9). http://dx.doi.org/10.3390/molecules21091264
44. Schiozer AL & Barata ES. Estabilidade de corantes e pigmentos de origem vegetal. Rev Fitos 2007; 3(2): 6-24.
45. Eggersdorfer, M & Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys 2018; 652:18-26.doi:10.1016/j.abb.2018.06.001
46. Li J, Shen J, Sun Z, Li J, Li C, Li X & Zhang Y. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae. Frontiers Microbiol 2017; 8. doi:10.3389/fmiscb.2017.01116
47. Hentschel H. Considerações sobre a produção e utilização do caldo de cana. Agropec. Catarinense 2009; 22 (2): 45-48. https://publicacoes.epagri.sc.gov.br/RAC/article/view/816
48. Ulbricht C, Bramwell R, Catapang M, Giese N, Isaac R, Le, TD & Zeolla MM. An evidence-based systematic review of chlorophyll by the natural standard research collaboration. J. Diet. Suppl 2014; 11(2): 198-239. doi:10.3109/19390211.2013.859853 .