Endemic Respiratory Viruses Inactivation in Aerosol by Means of Radiated Microwaves

Main Article Content

Antonio Manna Davide De Forni Marco Bartocci Nicola Pasculli Barbara Poddesu Alberto Sangiovanni Vincentelli Franco Lori

Abstract

Background. Airborne transmission of endemic respiratory viruses, such as SARS-CoV-2 and influenza viruses, poses significant public health challenges.


Aims. This manuscript investigates the efficacy of electromagnetic waves as a novel approach for airborne viruses inactivation in bioaerosol suspension, that is their natural route of transmission.


Methods. Using a bioaerosol system in a controlled laboratory environment, different variants of SARS-CoV-2 and the human influenza virus were exposed to resonant radiated microwaves within safe power levels.


Results.  Radiated microwaves exposure led to a substantial reduction in the infectivity of highly transmissible SARS-CoV-2 variants, including the delta and omicron variants, achieving 80-90% reduction in infectivity. These variants exhibited susceptibility to the resonant radiated microwaves similar to the original Wuhan variant of SARS-CoV-2, confirming the effectiveness of this approach against a range of SARS-CoV-2 strains. Furthermore, the H1N1 human influenza virus displayed a 90% reduction in infectivity when exposed to microwave waves. However, the influenza virus exhibited distinctive response patterns, being susceptible to higher frequencies (up to 16 GHz) compared to SARS-CoV-2. Additionally, longer exposure times (5 minutes) were required to achieve the same level of inactivation observed in SARS-CoV-2.


Conclusions: These findings highlight the potential of radiated microwaves as a strategy for inactivating SARS-CoV-2 and influenza viruses. Further, they contribute to determining the optimal frequencies, exposure times, and power levels required for effective virus inactivation. This innovative approach could provide valuable insights for developing sanitization strategies and public health interventions to mitigate the airborne transmission of respiratory viruses.

Keywords: SARS-CoV-2, Influenza Virus, airborne pathogens, microwave inactivation

Article Details

How to Cite
MANNA, Antonio et al. Endemic Respiratory Viruses Inactivation in Aerosol by Means of Radiated Microwaves. Medical Research Archives, [S.l.], v. 11, n. 10, oct. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4486>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i10.4486.
Section
Research Articles

References

Moreno T, Gibbons W. Aerosol transmission of human pathogens: From miasmata to modern viral pandemics and their preservation poten-tial in the Anthropocene record. Geosci Front. 2022;13(6):101282. doi:10.1016/j.gsf.2021.101282
2. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. High diversity of fungi in air par-ticulate matter. Proc Natl Acad Sci. 2009;106(31):12814-12819. doi:10.1073/pnas.0811003106
3. Zhou P, Yang XL, Wang XG, et al. A pneumo-nia outbreak associated with a new corona-virus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7
4. World Health Organization‎. Transmission of SARS-CoV-2: Implications for Infection Preven-tion Precautions, Scientific Brief. 2020. Pub-lished June 20, 2022. https://apps.who.int/iris/bitstream/handle/10665/333114/WHO-2019-nCoV-Sci_Brief-Transmission_modes-2020.3-eng.pdf?sequence=1&isAllowed=y
5. Abbasi J. Fourth COVID-19 Vaccine Dose In-creases Low Antibodies. JAMA. 2022;327(6):517. doi:10.1001/jama.2022.0727
6. Altmann DM, Boyton RJ. COVID-19 vaccina-tion: The road ahead. Science. 2022;375(6585):1127-1132. doi:10.1126/science.abn1755
7. Dubé E, MacDonald NE. COVID-19 vaccine hesitancy. Nat Rev Nephrol. 2022;18(7):409-410. doi:10.1038/s41581-022-00571-2
8. Niknam Z, Jafari A, Golchin A, et al. Potential therapeutic options for COVID-19: an update on current evidence. Eur J Med Res. 2022;27(1):6. doi:10.1186/s40001-021-00626-3
9. Drożdżal S, Rosik J, Lechowicz K, et al. An up-date on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Re-sist Updat. 2021;59:100794. doi:10.1016/j.drup.2021.100794
10. Peteranderl C, Herold S, Schmoldt C. Human Influenza Virus Infections. Semin Respir Crit Care Med. 2016;37(04):487-500. doi:10.1055/s-0036-1584801
11. Keilman LJ. Seasonal Influenza (Flu). Nurs Clin North Am. 2019;54(2):227-243. doi:10.1016/j.cnur.2019.02.009
12. Shirley M. Baloxavir Marboxil: A Review in Acute Uncomplicated Influenza. Drugs. 2020;80(11):1109-1118. doi:10.1007/s40265-020-01350-8
13. The Lancet. The COVID-19 pandemic in 2023: far from over. The Lancet. 2023;401(10371):79. doi:10.1016/S0140-6736(23)00050-8
14. World Health Organization‎. Influenza. Pub-lished 2023. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/influenza
15. World Health Organization‎. Global Influenza Programme. https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/burden-of-disease
16. Putri WCWS, Muscatello DJ, Stockwell MS, Newall AT. Economic burden of seasonal influ-enza in the United States. Vaccine. 2018;36(27):3960-3966. doi:10.1016/j.vaccine.2018.05.057
17. Marbus SD, Schweitzer VA, Groeneveld GH, et al. Incidence and costs of hospitalized adult influenza patients in The Netherlands: a retro-spective observational study. Eur J Health Econ. 2020;21(5):775-785. doi:10.1007/s10198-020-01172-1
18. Centers for Disease Control and Prevention (CDC). How Flu Spreads. Published September 2022. https://www.cdc.gov/flu/about/disease/spread.htm
19. Lewis D. Why the WHO took two years to say COVID is airborne. Nature. 2022;604(7904):26-31. doi:10.1038/d41586-022-00925-7
20. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci. 2020;117(22):11875-11877. doi:10.1073/pnas.2006874117
21. Morawska L, Milton DK. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. Published online July 6, 2020:ciaa939. doi:10.1093/cid/ciaa939
22. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reali-ty. Environ Int. 2020;139:105730. doi:10.1016/j.envint.2020.105730
23. Tang JW. Investigating the airborne transmis-sion pathway - different approaches with the same objectives. Indoor Air. 2015;25(2):119-124. doi:10.1111/ina.12175
24. Fabian P, Brain J, Houseman EA, Gern J, Mil-ton DK. Origin of Exhaled Breath Particles from Healthy and Human Rhinovirus-Infected Subjects. J Aerosol Med Pulm Drug Deliv. 2011;24(3):137-147. doi:10.1089/jamp.2010.0815
25. Mazzaro, G.J., Gallagher, K.A. Viruses Illumi-nated by Radio Frequencies: A Review of Openly Published Literature. DevCom Army Res Lab. 2023;(ARL-MR-1069).
26. Wang PJ, Pang YH, Huang SY, et al. Micro-wave resonant absorption of SARS-CoV-2 vi-ruses. Sci Rep. 2022;12(1):12596. doi:10.1038/s41598-022-16845-5
27. Xiao Y, Zhao L, Peng R. Effects of electromag-netic waves on pathogenic viruses and rele-vant mechanisms: a review. Virol J. 2022;19(1):161. doi:10.1186/s12985-022-01889-w
28. Manna A, De Forni D, Bartocci M, et al. SARS-CoV-2 Inactivation in Aerosol by Means of Radiated Microwaves. Viruses. 2023;15(7):1443. doi:10.3390/v15071443
29. Yang SC, Lin HC, Liu TM, et al. Efficient Struc-ture Resonance Energy Transfer from Micro-waves to Confined Acoustic Vibrations in Vi-ruses. Sci Rep. 2015;5(1):18030. doi:10.1038/srep18030
30. European Virus Archive Global. Human 2019-nCoV strain 2019-nCoV/Italy-INMI1, clade V. Published January 2020. (Archive E, «Human 2019-nCoV strain 2019-nCoV/Italy-INMI1, clade V,» 2020, available on line-https://www.european-virus-archive.com/virus/human-2019-ncov-strain-2019-ncovitaly-inmi1-clade-v).
31. Bugatti A, Filippini F, Bardelli M, et al. SARS-CoV-2 Infects Human ACE2-Negative Endothe-lial Cells through an αvβ3 Integrin-Mediated Endocytosis Even in the Presence of Vaccine-Elicited Neutralizing Antibodies. Viruses. 2022;14(4):705. doi:10.3390/v14040705
32. Labriola JM, Miersch S, Chen G, et al. Pep-tide–Antibody Fusions Engineered by Phage Display Exhibit an Ultrapotent and Broad Neutralization of SARS-CoV-2 Variants. ACS Chem Biol. 2022;17(7):1978-1988. doi:10.1021/acschembio.2c00411
33. Caruso A, Caccuri F, Bugatti A, et al. Metho-trexate inhibits SARS‐CoV‐2 virus replication “in vitro.” J Med Virol. 2021;93(3):1780-1785. doi:10.1002/jmv.26512
34. Reed LJ, Muench H. A simple method of esti-mating fifty percent endpoints. Am J Epidemi-ol. 1938;27(3):493-497.
doi:10.1093/oxfordjournals.aje.a118408
35. Analog Devices. Microwave Wideband Syn-thesizer with Integrated VCO. Published Sep-tember 2022.https://www.analog.com/en/products/adf4372.html