Glucose Transporter-1 and Tumor Size Affect Assessment in Gastric Cancer on SPECT

Main Article Content

Chenqing Yin Yule Nan Ju Yang

Abstract

Background: GLUT-1 expression is the crucial parameter affecting gastric cancer 18-FDG absorption is still controversial. This study is to explore the significance of GLUT-1 in gastric cancer 18-FDG SPECT.


Material/Methods: The gastric cancer samples of 134 patients with preoperative 18-FDG SPECT were assessed by GLUT-1 immunohistochemi­cal staining. The clinicopathological information of enrolled patients were analyzed with univariate and regression analyses.


Results: The SUVmax in positive GLUT-1 expression was significantly higher than that in negative expression (5.136±3.088 vs 4.003±3.604, p=0.004). Tumor diameter (OR 1.415, p=0.005) and GLUT-1 expression level(OR 1.683, p=0.041) were the factors associated with imaging results by visual assessment, independently. Tumor diameter was independent factor associated with SUVmax in positive imaging cases (p=0.029). Tumor diameter(p=0.003) and tumor differentiation(p=0.026) were independent factors related to SUVmax in differentiated carcinoma cases.


Conclusions: GLUT-1 expression level is major factor determining 18-FDG uptake of gastric cancer on SPECT. It is necessary to verify the result with PET/CT. Further investigation on analysis GLUT-1 expression in lesions of gastric cancer metastases and recurrences is required.

Keywords: Glucose Transporter Type 1, Gastric cancer, FDG, SPECT

Article Details

How to Cite
YIN, Chenqing; NAN, Yule; YANG, Ju. Glucose Transporter-1 and Tumor Size Affect Assessment in Gastric Cancer on SPECT. Medical Research Archives, [S.l.], v. 11, n. 9, sep. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4489>. Date accessed: 16 may 2024. doi: https://doi.org/10.18103/mra.v11i9.4489.
Section
Research Articles

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. Mar 2015;65(2):87-108. doi:10.3322/caac.21262
2. Marano L, Polom K, Patriti A, et al. Surgical management of advanced gastric cancer: An evolving issue. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. Jan 2016;42(1):18-27. doi:10.1016/j.ejso.2015.10.016
3. Mortensen MB. Novel imaging strategies for upper gastrointestinal tract cancers. Expert review of gastroenterology & hepatology. Mar 2015;9(3):295-303. doi:10.1586/17474124.2015.959928
4. Gauthe M, Richard-Molard M, Cacheux W, et al. Role of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography in gastrointestinal cancers. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. Jun 2015;47(6):443-54. doi:10.1016/j.dld.2015.02.005
5. Yun M. Imaging of Gastric Cancer Metabolism Using 18 F-FDG PET/CT. Journal of gastric cancer. Mar 2014;14(1):1-6. doi:10.5230/jgc.2014.14.1.1
6. Brush J, Boyd K, Chappell F, et al. The value of FDG positron emission tomography/ computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health technology assessment. Sep 2011;15(35):1-192, iii-iv. doi:10.3310/hta15350
7. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nuclear medicine communications. Mar 2008;29(3):193-207. doi:10.1097/MNM.0b013e3282f3a515
8. Gholamrezanejhad A, Mirpour S, Mariani G. Future of nuclear medicine: SPECT versus PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. Jul 2009;50(7):16N-18N.
9. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomical imaging in oncology. Nuclear medicine communications. Apr 2012; 33(4):349-61. doi:10.1097/MNM.0b013e32834ec8a5
10. Yin CQ, Nan YL, Cheng ZJ, Yin QZ, Lu T. Analysis of 18F-FDG maximum standardized uptake value in gastric cancer with coincidence imaging. Chin J Nucl Med Mol Imaging. 2014;34(1):30-3.
11. Abikhzer G, Keidar Z. SPECT/CT and tumour imaging. European journal of nuclear medicine and molecular imaging. May 2014;41 Suppl 1:S67-80. doi:10.1007/s00259-013-2534-4
12. Smith TA. The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nuclear medicine and biology. Jan 2001;28(1):1-4.
13. Yamada A, Oguchi K, Fukushima M, Imai Y, Kadoya M. Evaluation of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in gastric carcinoma: relation to histological subtypes, depth of tumor invasion, and glucose transporter-1 expression. Annals of nuclear medicine. Nov 2006;20(9):597-604.
14. Alakus H, Batur M, Schmidt M, et al. Variable 18F-fluorodeoxyglucose uptake in gastric cancer is associated with different levels of GLUT-1 expression. Nuclear medicine communications. Jun 2010;31(6):532-8. doi:10.1097/MNM.0b013e32833823ac
15. Wei B, Chen B, Kou QL, et al. [Glut1 expression and its relation with the absorption of 18F-FDG in stomach cancer]. Zhonghua yi xue za zhi. Jul 2 2004;84(13):1105-7.
16. Takebayashi R, Izuishi K, Yamamoto Y, et al. [18F]Fluorodeoxyglucose accumulation as a biological marker of hypoxic status but not glucose transport ability in gastric cancer. Journal of experimental & clinical cancer research : CR. 2013;32:34. doi:10.1186/1756-9966-32-34
17. Yin C, Nan Y, Lu T, Cheng Z, Cai Y. Clinicopathological Parameters Influence Assessment of FDG SPECT in Gastric Cancer. Hepato-gastroenterology. May 2015;62(139): 762-5.
18. Hamilton S, Aaltonen L. Pathology and genetics of tumours of the digestive system. World Health Organization classification of tumours. IARCP; 2000.
19. Park MJ, Lee WJ, Lim HK, Park KW, Choi JY, Kim BT. Detecting recurrence of gastric cancer: the value of FDG PET/CT. Abdominal imaging. Jul 2009;34(4):441-7. doi:10.1007/s00261-008-9424-4
20. Xiao Y-j, Zhang X-s, Xu W-p, Tang A-s, Qiao S-x. The value of 18F-FDG PET in estimation of recurrence and metastasis of gastric carcinoma. Chin J Nucl Med. 2004;24(3): 149-151. doi:10.3760/cma.j.issn.2095-2848.2004.03.007
21. Shoda H, Kakugawa Y, Saito D, et al. Evaluation of 18F-2-deoxy-2-fluoro-glucose positron emission tomography for gastric cancer screening in asymptomatic individuals undergoing endoscopy. British journal of cancer. Dec 3 2007;97(11):1493-8. doi:10.1038/sj.bjc.6604062
22. Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JF, Bosscha K. FDG-PET has no definite role in preoperative imaging in gastric cancer. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. May 2009;35(5):449-55. doi:10.1016/j.ejso.2008.11.010
23. Smyth E, Schoder H, Strong VE, et al. A prospective evaluation of the utility of 2-deoxy-2-[(18) F]fluoro-D-glucose positron emission tomography and computed tomography in staging locally advanced gastric cancer. Cancer. Nov 15 2012;118(22):5481-8. doi:10.1002/cncr.27550
24. Yan C, Yan M, Zhu ZG. [Application and value of preoperative staging in gastric cancer]. Zhonghua wei chang wai ke za zhi = Chinese journal of gastrointestinal surgery. 2013;16(2):114-117. doi:10.3760/cma.j.issn.1671-0274.2013.02.005
25. Cui JX, Li T, Xi HQ, Wei B, Chen L. Evaluation of 18F-FDG PET/CT in preoperative staging of gastric cancer: a meta-analysis. Zhonghua wei chang wai ke za zhi = Chinese journal of gastrointestinal surgery. 2013;16(5):418-424. doi:10.3760/cma.j.issn.1671-0274.2013.05.005
26. Park JC, Lee JH, Cheoi K, et al. Predictive value of pretreatment metabolic activity measured by fluorodeoxyglucose positron emission tomography in patients with metastatic advanced gastric cancer: the maximal SUV of the stomach is a prognostic factor. European journal of nuclear medicine and molecular imaging. Jul 2012;39(7): 1107-16. doi:10.1007/s00259-012-2116-x
27. Kaneko Y, Murray WK, Link E, Hicks RJ, Duong C. Improving patient selection for FDG-PET scanning in the staging of gastric cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. Mar 5 2015;doi:10.2967/jnumed.114.150946
28. Choi BH, Song HS, An YS, Han SU, Kim JH, Yoon JK. Relation between fluorodeoxyglucose uptake and glucose transporter-1 expression in gastric signet ring cell carcinoma. Nuclear medicine and molecular imaging. Mar 2011;45(1):30-5. doi:10.1007/s13139-010-0058-4
29. Geng J-h, Chen Y-m, Chen S-z, Tian J-h, He Y-j, Qiao S-z. Comparison of dual-head coincidence imaging SUV with PET imaging SUV:a phantom study. Chin J Nucl Med. 2004;24(5):308-309. doi:10.3760/cma.j.issn.2095-2848.2004.05.017
30. Huang K-m, Feng Y-l, He X-h, et al. Comparison of the different reconstruction algorithms for Philips GEMINI PET/CT. Chin J Med Imaging Technol. 2010;26(2):365-368.
31. Geng J-h, Chen S-z, Chen Y-m, Zhu J-q. Determination of pixel radioactive concentration in dual-head coincidence 18F-FDG PET imaging. Chin J Nucl Med. 2003;23(2):118-120. doi:10.3760/cma.j.issn.2095-2848.2003.02.018
32. Noguchi Y, Marat D, Saito A, et al. Expression of facilitative glucose transporters in gastric tumors. Hepato-gastroenterology. Jul-Aug 1999;46(28):2683-9.
33. Rho M, Kim J, Jee CD, et al. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer research. Jan-Feb 2007;27(1A): 251-8.
34. Lee JW, Lee SM, Lee MS, Shin HC. Role of 18F-FDG PET/CT in the prediction of gastric cancer recurrence after curative surgical resection. European journal of nuclear medicine and molecular imaging. Sep 2012;39(9): 1425-34. doi:10.1007/s00259-012-2164-2
35. Sawayama H, Ishimoto T, Watanabe M, et al. High expression of glucose transporter 1 on primary lesions of esophageal squamous cell carcinoma is associated with hematogenous recurrence. Annals of surgical oncology. May 2014;21(5):1756-62. doi:10.1245/s10434-013-3371-1
36. Goos JA, de Cuba EM, Coupe VM, et al. Glucose Transporter 1 (SLC2A1) and Vascular Endothelial Growth Factor A (VEGFA) Predict Survival After Resection of Colorectal Cancer Liver Metastasis. Annals of surgery. Jan 5 2015;doi:10.1097/SLA.0000000000001109
37. Kawamura T, Kusakabe T, Sugino T, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. Aug 1 2001;92(3):634-41.
38. Yin C, Gao B, Yang J, Wu J. Glucose Transporter-1 (GLUT-1) Expression is Associated with Tumor Size and Poor Prognosis in Locally Advanced Gastric Cancer. Medical science monitor basic research. Mar 23 2020;26:e920778. doi:10.12659/msmbr.920778