Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review

Main Article Content

Roshni Jain Dennis Mathew


Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.

Keywords: SARS-CoV-2, COVID-19, ACE2, diabetes, insulin

Article Details

How to Cite
JAIN, Roshni; MATHEW, Dennis. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. Medical Research Archives, [S.l.], v. 11, n. 10, oct. 2023. ISSN 2375-1924. Available at: <>. Date accessed: 11 dec. 2023. doi:
Review Articles


1. Barron E, Bakhai C, Kar P, et al. Type 1 and Type 2 diabetes and COVID-19 related mortality in England: a whole population study. NHS England Pre-print (under peer-review) (https://wwwenglandnhsuk/wp content/uploads/2020/05/valabhji-COVID-19-and-Diabetes-Paper-1pdf). 2020;

2. Sharma P, Behl T, Sharma N, et al. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed Pharmacother. Jul 2022; 151:113089. doi:10.1016/j.biopha.2022.113089

3. Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. Oct 2020; 8 (10): 823-833. doi: 10.1016/S2213-8587(20) 30271-0

4. Sardu C, Gargiulo G, Esposito G, Paolisso G, Marfella R. Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19. Cardiovasc Diabetol. Jun 11 2020; 19 (1):76. doi:10.1186/s12933-020-01047-y

5. Wensveen TT, Gasparini D, Rahelic D, Wensveen FM. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Research and Clinical Practice. Feb 2021; 172108637. doi:10.1016/j.diabres. 2020.108637

6. Lontchi-Yimagou E, Feutseu C, Kenmoe S, et al. Non-autoimmune diabetes mellitus and the risk of virus infections: a systematic review and meta-analysis of case-control and cohort studies. Scientific reports. Apr 26 2021; 11(1):8968. doi:10.1038/s41598-021-88598-6

7. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. Apr 2020; 162:108142.doi:10.1016/j.diabres.2020.108142

8. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci. Feb 2016; 351(2):201-11. doi:10.1016/j.amjms.2015.11. 011

9. Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front Endocrinol (Lausanne). 2021; 12:649525. doi:10.3389/fendo.2021.649525

10. Lu J, Zeng X, Lu W, et al. Documenting the immune response in patients with COVID-19-induced acute respiratory distress syndrome. Front Cell Dev Biol. 2023; 11:1207960. doi:10.3389/fcell.2023.1207960

11. Rao ST, Lau A, So HC. Exploring Diseases/Traits and Blood Proteins Causally Related to Expression of ACE2, the Putative Receptor of SARS-CoV-2: A Mendelian Randomization Analysis Highlights Tentative Relevance of Diabetes-Related Traits. Diabetes Care. Jul 2020; 43(7):1416-1426. doi:10.2337/dc20-0643

12. Guan W-j, Ni Z-y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020; 382(18):1708-1720. doi:10.1056/NEJM oa2002032

13. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. Feb 15 2020; 395(10223):497-506. doi:10.1016/ S0140-6736(20)30183-5

14. Xiao FX, Zimpelmann J, Agaybi S, Gurley SB, Puente L, Burns KD. Characterization of Angiotensin-Converting Enzyme 2 Ectodomain Shedding from Mouse Proximal Tubular Cells. Plos One. Jan 2014;9 (1)e85958. doi:10.1371/ journal.pone.0085958

15. Salem ESB, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. American Journal of Physiology-Renal Physiology. Mar 2014; 306(6):F629-F639. doi:10.1152/ajprenal.00516.2013

16. Park SE, Kim WJ, Park SW, et al. High urinary ACE2 concentrations are associated with severity of glucose intolerance and microalbuminuria. European Journal of Endocrinology. Feb 2013; 168(2):203-210. doi:10.1530/eje-12-0782

17. Hardtner C, Morke C, Walther R, Wolke C, Lendeckel U. High glucose activates the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic beta-cells. International Journal of Molecular Medicine. Oct 2013; 32(4):795-804. doi:10.3892/ijmm.2013.1469

18. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney International. Dec 2008; 74(12):1610-1616. doi:10.1038/ki.2008.497

19. Sandooja R, Vura N, Morocco M. Heightened ACE Activity and Unfavorable Consequences in COVID-19 Diabetic Subjects. International Journal of Endocrinology. Jul 2020; 20207847526. doi:10.1155/2020/ 7847526

20. Garreta E, Prado P, Stanifer ML, et al. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metabolism. Jun 2022; 34(6):857-+. doi:10.1016/j.cmet.2022.04.009

21. Menon R, Otto EA, Sealfon R, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney Int. Dec 2020; 98(6):1502-1518. doi:10.1016/ j.kint.2020.09.015

22. Gilbert RE, Caldwell L, Misra PS, et al. Overexpression of the Severe Acute Respiratory Syndrome Coronavirus-2 Receptor, Angiotensin-Converting Enzyme 2, in Diabetic Kidney Disease: Implications for Kidney Injury in Novel Coronavirus Disease 2019. Canadian Journal of Diabetes. Mar 2021;45(2)doi:10.1016/j.jcjd.2020.07.003

23. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. International Journal of Molecular Sciences. Mar 2017; 18(3)563. doi:10.3390/ijms18030563

24. Wijnant SRA, Jacobs M, Van Eeckhoutte HP, et al. Expression of ACE2, the SARS-CoV-2 Receptor, in Lung Tissue of Patients With Type 2 Diabetes. Diabetes. Dec 2020; 69(12):2691-2699. doi:10.2337/db20-0669

25. Herman-Edelstein M, Guetta T, Barnea A, et al. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovascular Diabetology. Apr 2021; 20(1)90. doi:10.1186/s12933-021-01275-w

26. Jiang X, Eales JM, Scannali D, et al. Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. Eur Heart J. Dec 21 2020; 41(48):4580-4588. doi:10.1093/eurheartj/ehaa794

27. Hoffmann BR, Widlansky ME, Greene AS. Hyperglycemia-induced Glycosylation: A Driving Force for Vascular Dysfunction in Diabetes? Faseb Journal. Apr 2016;30

28. Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of Virology. Dec 2005; 79(23):14614-14621. doi:10.1128/jvi.79.23.14614-14621.2005

29. Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cellular and Molecular Life Sciences. Nov 2004;61 21):2738-2743. doi:10.1007/s00018-004-4242-5

30. Cardenas-Leon M, Diaz-Diaz E, Arguelles-Medina R, Sanchez-Canales P, Diaz-Sanchez V, Larrea F. Glycation and protein crosslinking in the diabetes and ageing pathogenesis. Revista De Investigacion Clinica-Clinical and Translational Investigation. Nov-Dec 2009; 61 (6):505-520.

31. Khalid M, Petroianu G, Adem A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules. Apr 2022; 12(4)542. doi:10.3390/biom12040542

32. Mengstie MA, Abebe EC, Teklemariam AB, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Frontiers in Molecular Biosciences. Sep 2022; 91002710. doi:10.3389/fmolb.2022.1002710

33. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M. Hyperglycemia and Glycation in Diabetic Complications. Antioxidants & Redox Signaling. Dec 2009; 11(12):3071-3109. doi:10.1089/ars.2009.2484

34. Stefano GB, Challenger S, Kream R. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. European Journal of Nutrition. Dec 2016; 55(8):2339-2345. doi:10.1007/s00394-016-1212-2

35. Warboys CM, Fraser PA. Hyperglycemia attenuates acute permeability response to advanced glycation end products in retinal microvasculature. Microvascular Research. Jul 2010; 80(1):174-176. doi:10.1016/j.mvr.2010. 03.004

36. Zechner D, Sempert K, Genz B, et al. Impact of hyperglycemia and acute pancreatitis on the receptor for advanced glycation endproducts. International Journal of Clinical and Experimental Pathology. 2013; 6 (10):2021-2029.

37. Varki A. Biological roles of glycans. Glycobiology. Jan 2017; 27(1):3-49. doi:10.1093/glycob/cww086

38. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. Journal of Medical Virology. Jul 2020; 92 (7):770-775. doi:10.1002/jmv.25887

39. Mehdipour AR, Hummer G. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proceedings of the National Academy of Sciences of the United States of America. May 2021; 118(19) e2100425118. doi:10.1073/pnas.2100425118

40. Sartore G, Ragazzi E, Faccin L, Lapolla A. A role of glycation and methylation for SARS-CoV-2 infection in diabetes? Medical Hypotheses. Nov 2020; 144110247. doi:10.1016/j.mehy.2020.110247

41. Yan RH, Zhang YY, Li YN, Xia L, Guo YY, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. Mar 2020; 367(6485):1444-+. eabb2762. doi:10.1126/science.abb2762

42. D'Onofrio N, Scisciola L, Sardu C, et al. Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte. Cardiovascular Diabetology. May 2021; 20(1)99. doi:10.1186/s12933-021-01286-7

43. Xiao TS, Lu JM, Zhang J, et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nature Structural & Molecular Biology. Feb 2021; 28(2):202-+. doi:10.1038/s41594-020-00549-3

44. Fernandez C, Rysa J, Almgren P, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. Journal of Internal Medicine. Oct 2018; 284(4):377-387. doi:10.1111/joim.12783

45. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance. Sep 2020;3(9)e202000786.doi:10.26508/lsa.202000786

46. Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews Molecular Cell Biology. Oct 2002; 3(10):753-766. doi:10.1038/nrm934

47. Gioia M, Ciaccio C, Calligari P, et al. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochemical Pharmacology. Dec 2020; 182114225. doi:10.1016/j.bcp.2020.114225

48. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. INHIBITION OF FURIN-MEDIATED CLEAVAGE ACTIVATION OF HIV-1 GLYCOPROTEIN-GP160. Nature. Nov 1992; 360(6402):358-361. doi:10.1038/ 360358a0

49. Stienekegrober A, Vey M, Angliker H, et al. INFLUENZA-VIRUS HEMAGGLUTININ WITH MULTIBASIC CLEAVAGE SITE IS ACTIVATED BY FURIN, A SUBTILISIN-LIKE ENDOPROTEASE. Embo Journal. Jul 1992; 11(7):2407-2414. doi:10.1002/j.1460-2075.1992.tb05305.x

50. Hoffmann M, Hofmann-winkler H, Pohlmann S. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. Springer Cham; 2018.

51. Ray EC, Miller RG, Demko JE, et al. Urinary Plasmin (ogen) as a Prognostic Factor for Hypertension. Kidney International Reports. Nov 2018; 3(6):1434-1442. doi:10.1016/j.ekir.2018.06.007

52. Ji HL, Zhao RZ, Matalon S, Matthay MA. ELEVATED PLASMIN (OGEN) AS A COMMON RISK FACTOR FOR COVID-19 SUSCEPTIBILITY. Physiological Reviews. Jul 2020; 100(3):1065-1075.doi:10.1152/physrev. 00013.2020

53. Kam YW, Okumura Y, Kido H, Ng LFP, Bruzzone R, Altmeyer R. Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells In Vitro. Plos One. Nov 2009; 4(11) e7870. doi:10.1371/journal.pone.0007870

54. Berri F, Rimmelzwaan GF, Hanss M, et al. Plasminogen Controls Inflammation and Pathogenesis of Influenza Virus Infections via Fibrinolysis. Plos Pathogens. Mar 2013; 9(3) e1003229. doi:10.1371/journal.ppat.1003229

55. Goto H, Wells K, Takada A, Kawaoka Y. Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. Journal of Virology. Oct 2001; 75(19):9297-9301. doi:10.1128/jvi.75.19.9297-9301.2001

56. LeBouder F, Lina B, Rimmelzwaan GF, Riteau B. Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase. Journal of General Virology. Nov 2010; 91:2753-2761. doi: 10.1099/vir. 0.023804-0

57. Murakami M, Towatari T, Ohuchi M, et al. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. European Journal of Biochemistry. May 2001; 268(10):2847-2855. doi:10.1046/j.1432-1327.2001.02166.x

58. Wang QM, Fang PN, He R, et al. O-GlcNAc transferase promotes influenza A virus-induced cytokine storm by targeting interferon regulatory factor-5. Science Advances. Apr 2020; 6 (16) eaaz 7086. doi:10.1126/ sciadv.aaz7086

59. Zhao RZ, Ali G, Nie HG, et al. Plasmin improves blood-gas barrier function in oedematous lungs by cleaving epithelial sodium channels. British Journal of Pharmacology. Jul 2020; 177(13):3091-3106. doi:10.1111/bph.15038

60. Talens S, Leebeek FWG, Demmers JAA, Rijken DC. Identification of Fibrin Clot-Bound Plasma Proteins. Plos One. Aug 2012; 7(8) e41966. doi:10.1371/journal.pone.0041966

61. Zhang BC, Zhou XY, Qiu YR, et al. Clinical characteristics of 82 cases of death from COVID-19. Plos One. Jul 2020; 15(7) e0235458. doi:10.1371/journal.pone.0235458

62. de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetology & Metabolic Syndrome. Aug 2020; 12(1)75. doi:10.1186/ s13098-020-00586-4

63. Sen S, Chakraborty R, Kalita P, Pathak MP. Diabetes mellitus and COVID-19: Understanding the association in light of current evidence. World Journal of Clinical Cases. Oct 2021; 9(28):8327-8339. doi:10.12998/wjcc.v9.i28.8327

64. Goodwin CM, Xu SH, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends in Microbiology. Dec 2015; 23(12):789-798. doi:10.1016/j.tim.2015.08.007

65. Mayer KA, Stockl J, Ziabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Frontiers in Immunology. Jul 2019; 101533. doi:10.3389/fimmu.2019. 01533

66. Codo AC, Davanzo GG, Monteiro LB, et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. Sep 01 2020; 32(3):437-446.e5. doi:10.1016/j.cmet.2020.07.007

67. Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. Jul 2020; 583(7816):469-472. doi:10.1038/s41586-020-2332-7

68. Matsuura Y, Shimizu-Albergine M, Barnhart S, et al. Diabetes Suppresses Glucose Uptake and Glycolysis in Macrophages. Circ Res. Mar 4 2022; 130(5):779-781. doi:10.1161/ CIRCRESAHA.121.320060

69. Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic beta-cells. Nature communications. Jun 6 2019; 10(1):2474. doi:10.1038/s41467-019-10189-x

70. Beitner R, Kalant N. Stimulation of glycolysis by insulin. The Journal of biological chemistry. Jan 25 1971; 246(2):500-3.

71. Fidelman ML, Seeholzer SH, Walsh KB, Moore RD. INTRACELLULAR PH MEDIATES ACTION OF INSULIN ON GLYCOLYSIS IN FROG SKELETAL-MUSCLE. American Journal of Physiology. 1982; 242(1):C87-C93. doi:10.1152/ajpcell.1982.242.1.C87

72. Theparambil SM, Weber T, Schmalzle J, Ruminot I, Deitmer JW. Proton Fall or Bicarbonate Rise GLYCOLYTIC RATE IN MOUSE ASTROCYTES IS PAVED BY INTRACELLULAR ALKALINIZATION. Journal of Biological Chemistry. Sep 2016; 291 (36):19108-19117. doi:10.1074/jbc.M116.730143

73. Arsenis G, Spencer BA. REGULATION OF NA+/H+ EXCHANGE IN RAT ADIPOCYTES - EFFECTS OF INSULIN. Endocrinology. May 1995; 136 5):1920-1927. doi:10.1210/en.136. 5.1920

74. Moore RD. STIMULATION OF NA-H EXCHANGE BY INSULIN. Biophysical Journal. 1981; 33 (2):203-210. doi:10.1016/s0006-3495(81)84881-3

75. Kreutzberger AJB, Sanyal A, Saminathan A, et al. SARS-CoV-2 requires acidic pH to infect cells. Bio Rxiv. Jun 14 2022; doi:10.1101/2022.06.09.495472

76. X C, W H, J L, et al. Hypertension and Diabetes Delay the Viral Clearance in COVID-19 Patients. Europe PMC; 2020. p. 12.

77. Zhang X, Si G, Lu H, et al. SARS-CoV-2 omicron variant clearance delayed in breakthrough cases with elevated fasting blood glucose. Virol J. Sep 13 2022; 19(1):148. doi:10.1186/s12985-022-01877-0

78. Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate Is a Metabolic Mediator That Shapes Immune Cell Fate and Function. Frontiers in Physiology. Oct 2021; 12688485. doi:10.3389/fphys.2021.688485

79. Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Frontiers in Immunology. Jul 2021; 12691134. doi:10.3389/fimmu.2021. 691134

80. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Jan 23 2018; 9(6):7204-7218. doi:10.18632/ oncotarget.23208

81. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews. Apr 2001; 81(2):807-869. doi: 10.1152/physrev. 2001.81.2.807

82. Alexandraki KI, Piperi C, Ziakas PD, et al. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: Associations with low-grade systemic inflammation. Journal of Clinical Immunology. Jul 2008; 28(4):314-321. doi:10.1007/s10875-007-9164-1

83. Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology. Feb 2015; 144(2):171-185. doi:10.1111/imm.12394

84. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nature Reviews Endocrinology. Dec 2012; 8(12):709-716. doi:10.1038/nrendo.2012.114

85. Sun L, Xi SG, He GY, et al. Two to Tango: Dialogue between Adaptive and Innate Immunity in Type 1 Diabetes. Journal of Diabetes Research. Jul 2020; 20204106518. doi:10.1155/2020/4106518

86. Xia C, Rao XQ, Zhong JX. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. Journal of Diabetes Research. 2017; 20176494795. doi:10.1155/2017/6494795

87. Kim JH, Park K, Lee SB, et al. Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes. Journal of Diabetes Investigation. Sep 2019; 10(5):1223-1228. doi:10.1111/jdi.13002

88. Huang KJ, Su IJ, Theron M, et al. An interferon-gamma-related cytokine storm in SARS patients. Journal of Medical Virology. Feb 2005; 75(2):185-194. doi:10.1002/ jmv.20255

89. Manouchehrpour M, Spagnuolo PJ, Rodman HM, Bissada NF. COMPARISON OF NEUTROPHIL CHEMOTACTIC RESPONSE IN DIABETIC-PATIENTS WITH MILD AND SEVERE PERIODONTAL-DISEASE. Journal of Periodontology. 1981; 52(8):410-415. doi:10.1902/jop.1981.52.8.410

90. McMullen JA, Vandyke TE, Horoszewicz HU, Genco RJ. NEUTROPHIL CHEMOTAXIS IN INDIVIDUALS WITH ADVANCED PERIODONTAL-DISEASE AND A GENETIC PREDISPOSITION TO DIABETES-MELLITUS. Journal of Periodontology. 1981; 52 (4):167-173. doi:10.1902/jop.1981.52.4.167

91. Tchorzewski H, Glowacka E, Banasik M, Lewkowicz P, Szalapska-Zawodniak M. Activated T lymphocytes from patients with high risk of type I diabetes mellitus have different ability to produce interferon-gamma, interleukin-6 and interleukin-10 and undergo anti-CD95 induced apoptosis after insulin stimulation. Immunology Letters. Jan 2001;75(3):225-234. doi:10.1016/s0165-2478(00)00309-6

92. Andre S, Picard M, Cezar R, et al. T cell apoptosis characterizes severe Covid-19 disease. Cell Death and Differentiation. Aug 2022;29(8):1486-1499. doi:10.1038/s41418-022-00936-x

93. Behrens EM, Koretzky GA. Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis & Rheumatology. Jun 2017;69(6):1135-1143. doi:10.1002/art.40071

94. Alzaid F, Julla JB, Diedisheim M, et al. Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severeCOVID-19 in type 2 diabetes. Embo Molecular Medicine. Oct 2020;12(10)e13038. doi:10.15252/emmm.202013038

95. Gozzi-Silva SC, Oliveira LD, Alberca RW, et al. Generation of Cytotoxic T Cells and Dysfunctional CD8 T Cells in Severe COVID-19 Patients. Cells. Nov 2022;11(21)3359. doi:10.3390/cells11213359

96. Gruber C. Impaired interferon signature in severe COVID-19. Nature Reviews Immunology. 2020 Apr 2020; doi:10.1038/ s41577-020-0335-0

97. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews. Jun 2020;19(6)102537. doi:10.1016/ j.autrev.2020.102537

98. Yang Y, Shen CG, Li JX, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. Journal of Allergy and Clinical Immunology. Jul 2020;146 (1):119-+. doi:10.1016/j.jaci.2020.04.027

99. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. Jci Insight. Oct 2019;4(20)e131774. doi:10.1172 /jci.insight.131774

100. Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. May 2020;26(5):681-+. doi:10.1038/s41591-020-0868-6

101. Barman HA, Atici A, Sahin I, et al. Prognostic significance of cardiac injury in COVID-19 patients with and without coronary artery disease. Coronary Artery Disease. Aug 2021;32(5):359-366. doi:10.1097/mca.0000000000000914

102. Beigmohammadi MT, Jahanbin B, Safaei M, et al. Pathological Findings of Postmortem Biopsies From Lung, Heart, and Liver of 7 Deceased COVID-19 Patients. International Journal of Surgical Pathology. Apr 2021;29(2):135-145. 1066896920935195. doi:10.1177/1066896920935195

103. Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI in Children with Multisystem Inflammatory Syndrome Associated with COVID-19. Radiology. Dec 2020;297(3):E283-E288. doi:10.1148/radiol.2020202288

104. Guo T, Fan YZ, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). Jama Cardiology. Jul 2020;5(7):811-818. doi:10.1001/jamacardio.2020.1017

105. Li DZ, Chen Y, Jia Y, et al. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China Insights From the ERS-COVID-19 Study. Circulation Research. Jul 2020;127(3):397-399. doi:10.1161/circresaha.120.317070

106. Shi SB, Qin M, Cai YL, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European Heart Journal. Jun 2020;41(22):2070-2079. doi:10.1093/eurheartj/ehaa408

107. Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol. Jun 01 2020;318(6):F1454-F1462. doi:10.1152/ajprenal.00160.2020

108. Peng SY, Wang HY, Sun XY, et al. Early versus late acute kidney injury among patients with COVID-19-a multicenter study from Wuhan, China. Nephrology Dialysis Transplantation. Dec 2020;35(12):2095-2102. doi:10.1093/ndt/gfaa288

109. Pfister F, Vonbrunn E, Ries T, et al. Complement Activation in Kidneys of Patients With COVID-19. Frontiers in Immunology. Jan 2021;11594849.doi:10.3389/fimmu.2020.594849

110. Li J, Fan JG. Characteristics and Mechanism of Liver Injury in 2019 Coronavirus Disease. Journal of Clinical and Translational Hepatology. Jan-Mar 2020;8(1):13-17. doi:10.14218/jcth.2020.00019

111. Ng DL, Al Hosani F, Keating MK, et al. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014. American Journal of Pathology. Mar 2016;186(3):652-658. doi:10.1016/j.ajpath.2015.10.024

112. Tian SF, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathology. Jun 2020;33(6):1007-1014. doi:10.1038/s41379-020-0536-x

113. Delgado-Gonzalez P, Gonzalez-Villarreal CA, Roacho-Perez JA, et al. Inflammatory effect on the gastrointestinal system associated with COVID-19. World Journal of Gastroenterology. Jul 2021;27(26):4160-4171. doi:10.3748/wjg.v27.i26.4160

114. Muzahim YE, Parish DC, Goyal H. Insights into Acute Pancreatitis Associated COVID-19: Literature Review. Journal of Clinical Medicine. Dec 2021;10(24)5902. doi:10.3390/ jcm10245902

115. Ye Q, Wang BL, Zhang T, Xu J, Shang SQ. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. American Journal of Physiology-Gastrointestinal and Liver Physiology. Aug 2020;319(2):G245-G252. doi:10.1152/ajpgi.00148.2020

116. Al Saiegh F, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. Journal of Neurology Neurosurgery and Psychiatry. Aug 2020;91(8):846-848. doi:10.1136/jnnp-2020-323522

117. Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes and New Infections. May 2020;35100669. doi:10.1016/j.nmni.2020.100669

118. Wu YS, Xu XL, Chen ZJ, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behavior and Immunity. Jul 2020;87:18-22. doi:10.1016/j.bbi.2020.03.031

119. Zhang AJ, Lee ACY, Chu H, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Infects and Damages the Mature and Immature Olfactory Sensory Neurons of Hamsters. Clinical Infectious Diseases. Jul 2021;73(2):E503-E512. doi:10.1093/cid/ciaa995

120. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nature Medicine. Dec 2019;25(12):1822-1832. doi:10.1038/ s41591-019-0675-0

121. Lee YS, Olefsky J. Chronic tissue inflammation and metabolic disease. Genes & Development. Mar 2021;35(5-6):307-328. doi:10.1101/gad.346312