Case report on Reversal of Field Cancerization using Nutraceuticals mapped to the aberrant pathways deciphered via NGS analysis of the neoplastic oral mucosa
Main Article Content
Abstract
Head and neck cancer, particularly oral cancer, presents a significant health concern in Southeast Asia with a high incidence rate, advanced stage of presentation and poor treatment outcomes. The high failure rate is due to recurrence of primary tumor and emergence of second primary tumors (SPTs) due to field cancerization. This case report focuses on a 79-year-old male with a long history of tobacco exposure, resulting in extensive field cancerization within the oral mucosa. This led to sequential development of six primaries both malignant and pre-malignant over the period of 8 years for which the patient underwent multiple surgical resections over these years. The last surgical resection specimen was subjected to Next Generation Sequencing (NGS), genetic and epigenetic alterations were identified causing dysregulation of Janus kinase/signal transducers and activators of transcription signaling pathway (JAK-STAT), Toll-like receptor signalling (TLR) and Extracellular signal regulated kinase (ERK) signalling pathways. The patient post-surgical resection is labelled as disease free; the treatment guidelines do not recommend further prescription of anticancer drugs to prevent another primary and reverse field cancerization. Also, there is lack of approved drugs targeting these pathways, a novel approach was taken using natural supplements (nutraceuticals) to modulate these dysregulated pathways. Curcumin, Epigallocatechin Gallate (EGCG) and Genistein were prescribed to downregulate TLR expression, Boswellia extracts were used to antagonize ERK activation, and Methylsulfonylmethane (MSM), Honokiol, and Berberine were employed to inhibit the JAK-STAT pathway. The patient exhibited good compliance and experienced no adverse effects. Over a span of 24 months, the patient displayed a disease-free status, and the characteristic field cancerization changes within the oral mucosa began to reverse. This unique therapeutic strategy underscores the potential of natural supplements in targeting genetic aberrations and reverting neoplastic processes, ultimately preventing the development of second primary tumors. The study highlights the significance of NGS in unravelling genomic abnormalities underlying neoplasia and supports the exploration of nutraceuticals as a viable option for correcting these aberrations. The successful application of this approach in a real-world case provides a compelling basis for further research and clinical investigation into personalized and integrative approaches for managing oral cancer and potentially other malignancies.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Sharma RG, Bang B, Verma H, Mehta JM. Profile of oral squamous cell cancer in a tertiary level medical college hospital: A 10 yr study. Indian J Surg Oncol. 2012;3:250–4. PMC free article PubMed Google Scholar Ref list
3. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16. PubMed Google Scholar Ref list
4. Day G. L., Blot W. J., Shore R. E., Day G. L., Blot W. J., Shore R. E., McLaughlin J. K., Austin D. F., Greenberg R. S., Liff J. M., Preston-Martin S., Sarkar S., Schoenberg J. B. Second cancers following oral and pharyngeal cancers: role of tobacco and alcohol. J. Natl. Cancer Inst., 86: 131-137, 1994
5. Gangane N, Chawla S, Anshu, Gupta SS, Sharma SM. Reassessment of risk factors for oral cancer. Asian Pac J Cancer Prev. 2007;8:243–8. PubMed Google Scholar Ref list
6. Gupta S, Gupta R, Sinha DN, Mehrotra R. Relationship between type of smokeless tobacco & risk of cancer: A systematic review. Indian J Med Res. 2018 Jul;148(1):56-76. doi: 10.4103/ijmr.IJMR_2023_17. PMID: 30264755; PMCID: PMC6172923.
7. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of slaughter’s concept of field cancerization: Evidence and clinical implications. Cancer Res 2003;63:1727 30.
8. Dakubo GD, Jakupciak JP, Birch Machin MA, Parr RL. Clinical implications and utility of field cancerization. Cancer Cell Int 2007;7:2
9. Slaughter DP.The multiplicity of origin of malignant tumors: collective review. Int Abstr Surg 1944;79:89-98. Google Scholar Ref list
10. Holmstrup P, Vedtofte P, Reibel J, Stoltze K. Long-term treatment outcome of oral premalignant lesions. Oral Oncol. 2006;42:461–74. PubMed Google Scholar Ref list
11. Chun-Ta Liao, Christopher G. Wallace, Li-Yu Lee. et al. Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area, Oral Oncology, Volume 50, Issue 8, 2014 https://doi.org/10.1016/j.oraloncology.2014.04.010.
12. Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K S B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol. 2023 Mar 13;13:1002792.
doi: 10.3389/fonc.2023.1002792. PMID: 36994199
13. Arora, L., Kumar, A. P., Arfuso, F., Chng, W. J., & Sethi, G. (2018). The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. Cancers, 10(9), 327.
14. El-Zayat, S.R., Sibaii, H. & Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 43, 187 (2019). https://doi.org/10.1186/s42269-019-0227-2
15. Shcheblyakov DV, Logunov DY, Tukhvatulin AI, Shmarov MM, Naroditsky BS, Gintsburg AL. Toll-Like Receptors (TLRs): The Role in Tumor Progression. Acta Naturae. 2010 Jul;2(3):21-9. PMID: 22649649; PMCID: PMC3347570.
16. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005 Jun 15;65(12):5009-14. doi: 10.1158/0008-5472.CAN-05-0784. Erratum in: Cancer Res. 2005 Oct 1;65(19):9108. Chen, Shu-Hsia added. Erratum in: Cancer Res. 2019 Aug 15;79(16):4305. PMID: 15958541.
17. Thomas Force and Joseph V. Bonventre Growth Factors and Mitogen-Activated Protein Kinases 1 Jan 1998 Hypertension. 1998;31:152–161 https://doi.org/10.1161/01.HYP.31.1.152
18. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 19: 1997-2007, 2020
19. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018 Dec;27(12):1984-2009. doi: 10.1002/pro.3519. PMID: 30267440; PMCID: PMC6237706.
20. Seif, F., Khoshmirsafa, M., Aazami, H. et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15, 23 (2017). https://doi.org/10.1186/s12964-017-0177-y
21. Furqan, M., Mukhi, N., Lee, B. et al. Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res 1, 5 (2013). https://doi.org/10.1186/2050-7771-1-5
22. Xue C, Xie J, Zhao D, Lin S, Zhou T, Shi S, Shao X, Lin Y, Zhu B, Cai X. The JAK/STAT3 signalling pathway regulated angiogenesis in an endothelial cell/adipose-derived stromal cell co-culture, 3D gel model. Cell Prolif. 2017 Feb;50(1):e12307. doi: 10.1111/cpr.12307. Epub 2016 Sep 25. PMID: 27667148; PMCID: PMC6529085.
23. Bao S, Cao Y, Zhou H, Sun X, Shan Z, Teng W. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes. J Agric Food Chem. 2015 Mar 18;63(10):2811-9. doi: 10.1021/jf505531w. Epub 2015 Mar 10. PMID: 25732404.
24. Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J Spinal Cord Med. 2015 Mar;38(2):199-206. doi: 10.1179/2045772313Y.0000000179. Epub 2014 Jan 3. PMID: 24621048; PMCID: PMC4397202.
25. Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC. The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification. Arch Biochem Biophys. 2020 Nov 30;695:108620. doi: 10.1016/j.abb.2020.108620. Epub 2020 Oct 7. PMID: 33038311.
26. Ripley BJ, Fujimoto M, Serada S, Ohkawara T, Nishikawa T, Terabe F, Matsukawa Y, Stephanou A, Knight RA, Isenberg DA, Latchman DS, Kishimoto T, Naka T. Green tea polyphenol epigallocatechin gallate inhibits cell signaling by inducing SOCS1 gene expression. Int Immunol. 2010 May;22(5):359-66. doi: 10.1093/intimm/dxq015. Epub 2010 Feb 26. PMID: 20190037.
27. Fujimoto M, Naka T. SOCS1, a Negative Regulator of Cytokine Signals and TLR Responses, in Human Liver Diseases. Gastroenterol Res Pract. 2010;2010:470468. doi: 10.1155/2010/470468. Epub 2010 Sep 2. PMID: 20862390; PMCID: PMC2939392.
28. Li XW, Wu P, Yao J, Zhang K, Jin GY. Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via TLR4-Mediated Microglial Polarization. Appl Bionics Biomech. 2022 Apr 22;2022:4790344. doi: 10.1155/2022/4790344. PMID: 35498148; PMCID: PMC9054478.
29. Pratt, R., Kinch, M. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene 21, 7690–7699 (2002). https://doi.org/10.1038/sj.onc.1205758
30. Kumar R, Singh S, Saksena AK, Pal R, Jaiswal R, Kumar R. Effect of Boswellia Serrata Extract on Acute Inflammatory Parameters and Tumor Necrosis Factor-α in Complete Freund's Adjuvant-Induced Animal Model of Rheumatoid Arthritis. Int J Appl Basic Med Res. 2019 Apr-Jun;9(2):100-106.
doi: 10.4103/ijabmr.IJABMR_248_18. PMID: 31041173; PMCID: PMC6477955.
31. Gong, Y., Jiang, X., Yang, S. et al. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. Neuromol Med 24, 374–384 (2022). https://doi.org/10.1007/s12017-022-08707-0
32. 25 Kim BH, Kim M, Yin CH, Jee JG, Sandoval C, Lee H, Bach EA, Hahm DH, Baeg GH. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats. Br J Pharmacol. 2011 Sep;164(1):106-18.
doi: 10.1111/j.1476-5381.2011.01353.x. PMID: 21434883; PMCID: PMC3171864
33. S P N, Darvin P, Yoo YB, Joung YH, Kang DY, Kim DN, Hwang TS, Kim SY, Kim WS, Lee HK, Cho BW, Kim HS, Park KD, Park JH, Chang SH, Yang YM. The combination of methylsulfonylmethane and tamoxifen inhibits the Jak2/STAT5b pathway and synergistically inhibits tumor growth and metastasis in ER-positive breast cancer xenografts. BMC Cancer. 2015 Jun 19;15:474.
doi: 10.1186/s12885-015-1445-0. PMID: 26084564; PMCID: PMC4472404.
34. Miller LE. Methylsulfonylmethane decreases inflammatory response to tumor necrosis factor-α in cardiac cells. Am J Cardiovasc Dis. 2018 Jun 15;8(3):31-38. PMID: 30038844; PMCID: PMC6055070.
35. Tanabe, K., Matsushima-Nishiwaki, R., Yamaguchi, S. et al. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7, 16 (2010). https://doi.org/10.1186/1742-2094-7-16
36. Lee C, Oh JI, Park J, Choi JH, Bae EK, Lee HJ, Jung WJ, Lee DS, Ahn KS, Yoon SS. TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. Biomed Res Int. 2013;2013:580135.
doi: 10.1155/2013/580135. Epub 2013 Sep 16. PMID: 24151609; PMCID: PMC3787550.
37. Kim KH, Park JW, Yang YM, Song KD, Cho BW. Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells. Anim Biosci. 2021 Feb;34(2):312-319.
doi: 10.5713/ajas.20.0061. Epub 2020 Aug 24. PMID: 32898949; PMCID: PMC7876717.
38. Tsang, C.M., Cheung, Y.C., Lui, V.WY. et al. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts. BMC Cancer 13, 619 (2013). https://doi.org/10.1186/1471-2407-13-619
39. Kong R, Bharadwaj U, Eckols TK, Kolosov M, Wu H, Cruz-Pavlovich FJS, Shaw A, Ifelayo OI, Zhao H, Kasembeli MM, Wong STC, Tweardy DJ. Novel STAT3 small-molecule inhibitors identified by structure-based virtual ligand screening incorporating SH2 domain flexibility. Pharmacol Res. 2021 Jul;169:105637. doi: 10.1016/j.phrs.2021.105637. Epub 2021 Apr 29. PMID: 33932608; PMCID: PMC8217378.