Femtosecond laser-assisted cataract surgery: an incision efficacy review

Main Article Content

Guilherme Horta Rogério Horta Newton Kara-Junior

Abstract

Purpose: This study reviewed the scientific literature on corneal incisions in femtosecond laser-assisted cataract surgeries compared to keratome incisions in conventional phacoemulsification.


 


Conclusion: There are differences in the results of the studies. Automated incisions are more advantageous in the structure of the cut (reproducible tunnel architecture) and healing time of incisions (epithelial and endothelial gap, endothelial misalignment, Descemet membrane detachment and corneal thickening) compared to manual incisions, in addition to astigmatism correction <1.0 diopter with arcuate incisions. The induction of astigmatism and corneal aberrations is similar between the techniques. Incisions with an angle of entry of 110º in the cornea, triplanar shape, and width of <2.65 mm with the femtosecond laser platforms have presented the best results.

Keywords: Femtosecond laser-assisted cataract surgery, an incision efficacy review

Article Details

How to Cite
HORTA, Guilherme; HORTA, Rogério; KARA-JUNIOR, Newton. Femtosecond laser-assisted cataract surgery: an incision efficacy review. Medical Research Archives, [S.l.], v. 11, n. 12, jan. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4571>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v11i12.4571.
Section
Review Articles

References

1. Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC. Cataracts. Lancet. 2023;401(10374):377-389. doi:10.1016/S0140-6736(22)01839-6.

2. Kelman CD. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol. 1967;64(1):23-35. doi:10.1016/0002-9394(67)93340-5.

3. Market Scope. 2019. Cataract Surgical Equipment Market Report: a Global Analysis for 2018 to 2024. Accessed December 20, 2019. https://www.marketscope.com/pages/reports/101/2019-cataract-surgical-equipmentmarket-report-a-global-analysis-for-2018-to-2024-may-2019#reports

4. Nagy ZZ. New technology update: femtosecond laser in cataract surgery. Clin Ophthalmol. 2014;8:1157-1167. doi:10.2147/OPTH.S36040.

5. He L, Sheehy K, Culbertson W. Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol. 2011;22(1):43-52. doi:10.1097/ICU.0b013e3283414f76.

6. Nagy ZZ, Takacs AI, Filkorn T, et al. Complications of femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2014;40(1):20-28. doi:10.1016/j.jcrs.2013.08.046.

7. Roberts HW, Ni MZ, O’Brart DPS. Financial modelling of femtosecond laser-assisted cataract surgery within the National Health Service using a “hub and spoke” model for the delivery of high-volume cataract surgery. BMJ Open. 2017;7(3):e013616. doi:10.1136/bmjopen-2016-013616.

8. Popovic M, Campos-Möller X, Schlenker MB, Ahmed II. Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: A meta-analysis of 14 567 eyes. Ophthalmology. 2016; 123(10):2113-2126. doi:10.1016/j.ophtha.2016.07.005.

9. Chen X, Yu Y, Song X, Zhu Y, Wang W, Yao K. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts. J Cataract Refract Surg. 2017; 43(4):486-491. doi:10.1016/j.jcrs.2017.01.010.

10. Horta GA, Horta RC, Steinfeld K, Koch CR, Mello GR, Kara-Junior N. Ultrasound power and irrigation volume in different lens opacity grades: comparison of femtosecond laser-assisted cataract surgery and conventional phacoemulsification. Clinics (Sao Paulo). 2019; 74:e1294. doi:10.6061/clinics/2019/e1294.

11. Chen L, Hu C, Lin X, et al. Clinical outcomes and complications between FLACS and conventional phacoemulsification cataract surgery: a PRISMA-compliant Meta-analysis of 25 randomized controlled trials. Int J Ophthalmol. 2021;14(7):1081-1091.doi:10.18240/ijo.2021.07.18.

12. Friedman NJ, Palanker DV, Schuele G, et al. Femtosecond laser capsulotomy. J Cataract Refract Surg. 2011;37(7):1189-1198. doi:10.1016/j.jcrs.2011.04.022.

13. Roberts HW, Day AC, O’Brart DP. Femtosecond laser-assisted cataract surgery: a review. Eur J Ophthalmol. 2020;30(3):417-429. doi:10.1177/1120672119893291.

14. Zhu S, Qu N, Wang W, et al. Morphologic features and surgically induced astigmatism of femtosecond laser versus manual clear corneal incisions. J Cataract Refract Surg. 2017;43(11):1430-1435. doi:10.1016/j.jcrs.2017.08.011.

15. Song C, Baharozian CJ, Hatch KM, Talamo JH. Assessment of surgeon experience with femtosecond laser-assisted cataract surgery. Clin Ophthalmol. 2018;12: 1373-1377. doi:10.2147/OPTH.S171743.

16. Jin KH, Kim TG. Relationship between early structural changes at cornea incision sites and surgical outcomes after phacoemulsification. Int J Ophthalmol. 2019; 12(7):1139-1145. doi:10.18240/ijo.2019.07.14.

17. Xia Y, Liu X, Luo L, et al. Early changes in clear cornea incision after phacoemulsification: an anterior segment optical coherence tomography study. Acta Ophthalmol. 2009; 87(7): 764-768. doi:10.1111/j.1755-3768.2008.01333.x.

18. Vasavada AR, Praveen MR, Pandita D, et al. Effect of stromal hydration of clear corneal incisions: quantifying ingress of trypan blue into the anterior chamber after phacoemulsification. J Cataract Refract Surg. 2007;33(4):623-627. doi:10.1016/j.jcrs.2007.01.010.

19. Wang L, Dixit L, Weikert MP, Jenkins RB, Koch DD. Healing changes in clear corneal cataract incisions evaluated using Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2012;38(4):660-665. doi:10.1016/j.jcrs.2011.10.030.

20. Fukuda S, Kawana K, Yasuno Y, Oshika T. Wound architecture of clear corneal incision with or without stromal hydration observed with 3-dimensional optical coherence tomography. Am J Ophthalmol. 2011;151(3): 413-9.e1. doi:10.1016/j.ajo.2010.09.010.

21. Calladine D, Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography. J Cataract Refract Surg. 2007; 33(8):1429-1435. doi:10.1016/j.jcrs.2007.04.011.

22. Singhal D, Sahay P, Goel S, Asif MI, Maharana PK, Sharma N. Descemet membrane detachment. Surv Ophthalmol. 2020;65(3):279-293. doi:10.1016/j.survophthal.2019.12.006.

23. Li SS, Misra SL, Wallace HB, McKelvie J. Effect of phacoemulsification incision size on incision repair and remodeling: optical coherence tomography assessment. J Cataract Refract Surg. 2018; 44(11):1336-1343. doi:10.1016/j.jcrs.2018.07.025.

24. Ventura BV, Moraes HV Jr, Kara-Junior N, Santhiago MR. Role of optical coherence tomography on corneal surface laser ablation. J Ophthalmol. 2012; 2012:676740. doi:10.1155/2012/676740.

25. Chaves MAPD, de Medeiros AL, Vilar CMC, et al. Architecture evaluation of the main clear corneal incisions in femtosecond laser-assisted cataract surgery by optical coherence tomography imaging. Clin Ophthalmol. 2019; 13:365-372. doi:10.2147/OPTH.S184024.

26. Rodrigues R, Santos MSD, Silver RE, Campos M, Gomes RL. Corneal incision architecture: VICTUS femtosecond laser vs manual keratome. Clin Ophthalmol. 2019; 13:147-152. doi:10.2147/OPTH.S181144.

27. Titiyal JS, Kaur M, Ramesh P, et al. Impact of clear corneal incision morphology on incision-site descemet membrane detachment in conventional and femtosecond laser assisted phacoemulsification. Curr Eye Res. 2018; 43(3):293-299. doi:10.1080/02713683.2017.1396616.

28. Mastropasqua L, Toto L, Mastropasqua A, et al. Femtosecond laser versus manual clear corneal incision in cataract surgery. J Refract Surg. 2014;30(1):27-33. doi:10.3928/1081597X-20131217-03.

29. Grewal DS, Basti S. Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome. J Cataract Refract Surg. 2014;40 (4):521-530. doi:10.1016/j.jcrs.2013.11.028.

30. Wang X, Zhang Z, Li X, et al. Evaluation of femtosecond laser versus manual clear corneal incisions in cataract surgery using spectral-domain optical coherence tomography. J Refract Surg. 2018;34(1):17-22. doi:10.3928/1081597X-20171109-01.

31. Donnenfeld E, Rosenberg E, Boozan H, Davis Z, Nattis A. Randomized prospective evaluation of the wound integrity of primary clear corneal incisions made with a femtosecond laser versus a manual keratome. J Cataract Refract Surg. 2018;44(3):329-335. doi:10.1016/j.jcrs.2017.12.026.

32. Fernández J, Rodríguez-Vallejo M, Martínez J, Tauste A, Piñero DP. Prediction of surgically induced astigmatism in manual and femtosecond laser-assisted clear corneal incisions. Eur J Ophthalmol. 2018;28(4):398-405. doi:10.1177/1120672117747017.

33. Kohnen T, Löffler F, Herzog M, Petermann K, Böhm M. Tomographic analysis of anterior and posterior surgically induced astigmatism after 2.2 mm temporal clear corneal incisions in femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2019; 45(11):1602-1611. doi:10.1016/j.jcrs.2019.06.010.

34. Serrao S, Giannini D, Schiano-Lomoriello D, Lombardo G, Lombardo M. New technique for femtosecond laser creation of clear corneal incisions for cataract surgery. J Cataract Refract Surg. 2017; 43(1):80-86. doi:10.1016/j.jcrs.2016.08.038.

35. Nagy ZZ, Dunai A, Kránitz K, et al. Evaluation of femtosecond laser-assisted and manual clear corneal incisions and their effect on surgically induced astigmatism and higher-order aberrations. J Refract Surg. 2014; 30(8):522-525. doi:10.3928/1081597X-20140 711-04.

36. Alió JL, Abdou AA, Soria F, et al. Femtosecond laser cataract incision morphology and corneal higher-order aberration analysis. J Refract Surg. 2013;29(9):590-595. doi:10.3928/1081597X-20130819-01.

37. Wolffsohn JS, PhD, Bhogal G, BSc, Shah SMD. Effect of uncorrected astigmatism on vision. J Cataract Refract Surg. 2011;37 (3):454-460. doi:10.1016/j.jcrs.2010.09.022.

38. Schallhorn SC, MD, Hettinger KA, MS, Pelouskova M, MSc, et al. Effect of residual astigmatism on uncorrected visual acuity and patient satisfaction in pseudophakic patients. J Cataract Refract Surg. 2021;47(8):991-998. doi:10.1097/j.jcrs.0000000000000560.

39. Vickers LA, Gupta PK. Femtosecond laser-assisted keratotomy. Curr Opin Ophthalmol. 2016; 27(4):277-284. doi:10.1097/ICU.0000000000000267.

40. Oshika T, Shimazaki J, Yoshitomi F, et al. Arcuate keratotomy to treat corneal astigmatism after cataract surgery: a prospective evaluation of predictability and effectiveness. Ophthalmology. 1998;105(11): 2012-2016. doi:10.1016/S0161-6420(98)9111 7-4.

41. Price FW, Grene RB, Marks RG, Gonzales JS. Astigmatism reduction clinical trial: a multicenter prospective evaluation of the predictability of arcuate keratotomy. Evaluation of surgical nomogram predictability. ARC-T study group. Arch Ophthalmol. 1995 ;113(3):277-282. doi:10.1001/archopht.1995.01100030031017

42. Zhang F, Li S, Huo D, Li Q. Predictors of femtosecond laser-assisted arcuate keratotomy efficacy for astigmatism correction in cataract surgery. J Refract Surg. 2022;38(8):480-486. doi:10.3928/1081597X-20220609-01.

43. González-Cruces T, Cano-Ortiz A, Sánchez-González MC, Sánchez-González JM. Cataract surgery astigmatism incisional management. Manual relaxing incision versus femtosecond laser-assisted arcuate keratotomy. A systematic review. Graefes Arch Clin Exp Ophthalmol. 2022;260 (11):3437-3452. doi:10.1007/s00417-022-05728-0.

44. Wang L, Scott W, Montes de Oca I, Koch DD, Tauber S, Al-Mohtaseb Z. Outcome of astigmatism correction using femtosecond laser combined with cataract surgery: penetrating vs intrastromal incisions. J Cataract Refract Surg. 2022;48(9):1063-1072. doi:10.1097/j.jcrs.0000000000000911.

45. Day AC, Stevens JD. Predictors of femtosecond laser intrastromal astigmatic keratotomy efficacy for astigmatism management in cataract surgery. J Cataract Refract Surg. 2016; 42(2):251-257. doi:10.1016/j.jcrs.2015.09.028.

46. Lopes D, Loureiro T, Carreira R, et al. Transepithelial or intrastromal femtosecond laser arcuate keratotomy to manage corneal astigmatism at the time of cataract surgery. Arch Soc Esp Oftalmol (Engl Ed). 2021;96(8):408-414. doi:10.1016/j.oftale.2020.09.008.

47. Chang JSM. Femtosecond laser-assisted astigmatic keratotomy: a review. Eye Vis (Lond). 2018;5:6. doi:10.1186/s40662-018-0099-9.

48. Ganesh SMS, DNB, Brar SMS, Reddy Arra RMS. Comparison of astigmatism correction between anterior penetrating and intrastromal arcuate incisions in eyes undergoing femtosecond laser–assisted cataract surgery. J Cataract Refract Surg. 2020;46(3):394-402. doi:10.1097/j.jcrs.0000000000000069.

49. St Clair RM, Sharma A, Huang D, et al. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty. J Cataract Refract Surg. 2016; 42(4):556-562. doi:10.1016/j.jcrs.2015.12.053.

50. Visco DM, Bedi R, Packer M. Femtosecond laser-assisted arcuate keratotomy at the time of cataract surgery for the management of preexisting astigmatism. J Cataract Refract Surg. 2019;45(12):1762-1769. doi:10.1016/j.jcrs.2019.08.002.

51. Hiep NX, Khanh PTM, Quyet D, et al. Correcting corneal astigmatism with corneal arcuate incisions during femtosecond laser assisted cataract surgery. Open Access Maced J Med Sci. 2019;7(24):4260-4265. doi:10.3889/oamjms.2019.371.

52. Roberts HW, Wagh VK, Sullivan DL, Archer TJ, O’Brart DPS. Refractive outcomes after limbal relaxing incisions or femtosecond laser arcuate keratotomy to manage corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg. 2018;44(8):955-963. doi:10.1016/j.jcrs.2018.05.027.

53. Chen W, Ji M, Wu J, et al. Effect of femtosecond laser-assisted steepest-meridian clear corneal incisions on preexisting corneal regular astigmatism at the time of cataract surgery. Int J Ophthalmol. 2020;13(12):1895-1900. doi:10.18240/ijo.2020.12.08.

54. Sanmillan IL, Thumann G, Kropp M, Cvejic Z, Pajic B. Predictability of astigmatism correction by arcuate incisions with a femtosecond laser using the Gaussian approximation calculation. Micromachines (Basel). 2023;14(5):1009. doi:10.3390/mi14051009.

55. Ahn H, Jun I, Seo KY, Kim EK, Kim TI. Femtosecond laser-assisted arcuate keratotomy for the management of corneal astigmatism in patients undergoing cataract surgery: comparison with conventional cataract surgery. Front Med (Lausanne). 2022;9:914504. doi:10.3389/fmed.2022.914504.

56. Wortz G, Gupta PK, Goernert P, et al. Outcomes of femtosecond laser arcuate incisions in the treatment of low corneal astigmatism. Clin Ophthalmol. 2020;14:2229-2236. doi:10.2147/OPTH.S264370.

57. Blehm C, Potvin R. Clinical Outcomes after Femtosecond Laser-Assisted arcuate Corneal Incisions versus Manual Incisions. Clin Ophthalmol. 2021;15:2635-2641. doi:10.2147/OPTH.S321358.

58. Hernandez R, MSc, Almenara CMD, PhD, Soriano D, MSc, et al. Toric intraocular lens implantation vs femtosecond laser–assisted arcuate keratotomy for correction of moderate astigmatism in cataract surgery. J Cataract Refract Surg. 2022;48(8):887-893. doi:10.1097/j.jcrs.0000000000000879.

59. Hecht I, Kanclerz P, Tuuminen R. Secondary outcomes of lens and cataract surgery: more than just “best-corrected visual acuity”. Prog Retin Eye Res. 2023;95:101150. doi:10.1016/j.preteyeres.2022.101150.