Metadichol-Induced Differentiation of Pancreatic Ductal Cells (PANC-1) into Insulin-Producing Cells
Main Article Content
Abstract
Endocrine gene expression in PANC-1, a type of pancreatic cancer cell, has been studied in the context of their potential to be reprogrammed toward a normal, differentiated state. Alkaline phosphatase activity has also been shown in pluripotent stem cells to differentiate between feeder and parental cells in reprogramming experiments. Metadichol®-based cell programming holds promise as a versatile and potentially safer approach for manipulating cellular behavior without the use of viral vectors, gating, or CRISPR. Using qRT‒PCR the results show multifold increase in the gene expression of CA9, GCG, INS MAFA, NEUROD1, NGN3, NKX2-2, PAX6: PDX1, SLC2A2, FOXO1, and SIRT1. ALP levels increased and this activity is often used to distinguish stem cells from feeder cells as well as from parental cells in reprogramming experiments. Pluripotency was confirmed by the presence of islet-like structures on day eight. Metadichol exhibits anticancer activity with a CC50 value of 5.50 µg/ml compared to standard doxorubicin with a CC50 value of 10.28 µg/ml. At 100 ug/ml Metadichol is 82% cytotoxic.in a MTT assay Anti-tumor gene Klotho’s expression was increased 70fold on day eight. All the genes seen expressed regulate endocrine cell development in the pancreas and are involved in insulin and glucagon secretion. Gene network analysis is presented to show how Metadichol induced expression leads to a closed loop feedback network and biological process that would help in mitigating diabetes and other related disorders.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol. 2021;9(10):708-724. doi:10.1016/S2213-8587(21)00170-4.
3. Donadel G, Pastore D, Della-Morte D, et al. FGF-2b and h-PL transform duct and nonendocrine human pancreatic cells into endocrine insulin secreting cells by modulating differentiating genes. Int J Mol Sci. 2017;18(11):2234. doi:10.3390/ijms18112234.
4. Zhang S, Huang F, Tian W, et al. Andrographolide promotes pancreatic duct cells differentiation into insulin-producing cells by targeting PDX-1. Biochem Pharmacol. 2020;174:113785. doi:10.1016/j.bcp.2019.113785.
5. Damame H, Rooge S, Patil R, Garad C, Arvindekar A. In vitro differentiation of human pancreatic duct–derived PANC-1 cells into β-cell phenotype using Tinospora cordifolia. In Vitro Cell Dev Biol Anim. 2022;58(5):376-383. doi:10.1007/s11626-022-00690-x.
6. Heydari M, Yazdanparast R. Differentiation of PANC-1 ductal cells to β-like cells via cellular GABA modulation by magainin and CPF-7 peptides. Biochem Biophys Res Commun. 2022;597:128-133. doi:10.1016/j.bbrc.2022.01.126.
7. Schmidtlein PM, Volz C, Hackel A, et al. Activation of a ductal-to-endocrine transdifferentiation transcriptional program in the pancreatic cancer cell line PANC-1 is controlled by RAC1 and RAC1b through antagonistic regulation of stemness factors. Cancers. 2021;13(21):5541. doi:10.3390/cancers13215541.
8. Fomina-Yadlin D, Kubicek S, Walpita D, et al. Small-molecule inducers of insulin expression in pancreatic α-cells. Proc Natl Acad Sci U S A. 2010;107(34):15099-15104. doi:10.1073/pnas.1010018107.
9. Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small molecule-induced pancreatic β-like cell development: mechanistic approaches and available strategies. Int J Mol Sci. 2020;21(7):2388. doi:10.3390/ijms21072388.
10. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25-53. doi:10.2174/157339913804143225.
11. Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75:155-179. doi:10.1146/annurev-physiol-030212-183754.
12. Dong S, Li W, Li X, et al. Glucose metabolism and tumor microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol. 2022;13:1038650. doi:10.3389/fimmu.2022.1038650.
13. Hidalgo M, Cascinu S, Kleeff J, et al. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2015;15(1):8-18. doi:10.1016/j.pan.2014.10.001.
14. Ghani MW, Bin L, Jie Y, et al. Differentiation of rat pancreatic duct stem cells into insulin-secreting islet-like cell clusters through BMP7 inducement. Tissue Cell. 2020;67:101439. doi:10.1016/j.tice.2020.101439.
15. Pedica F, Beccari S, Pedron S, et al. PDX-1 (pancreatic/duodenal homeobox-1 protein 1). Pathologica. 2014;106(4):315-321.
16. Vinogradova TV, Sverdlov ED. PDX1: a Unique Pancreatic Master Regulator Constantly Changes Its Functions during Embryonic Development and Progression of Pancreatic Cancer. Biochemistry (Mosc). 2017;82(8):887-893. doi:10.1134/S000629791708003X.
17. Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci. 2022;9:1091757. doi:10.3389/fmolb.2022.1091757.
18. Nishimura W, Iwasa H, Tumurkhuu M. Role of the transcription factor MAFA in the maintenance of pancreatic β-cells. Int J Mol Sci. 2022;23(9):4478. doi:10.3390/ijms23094478.
19. Raghavan PR, US Patents 8 722 093; vol 2014(9),034:383 (2015) ; 9,006,292; 2015.
20. Berger C, Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch. 2020;472(9):1249-1272. doi:10.1007/s00424-020-02383-4.
21. Yang M, Darwish T, Larraufie P, et al. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep. 2021;11(1):2529. doi:10.1038/s41598-021-81349-7.
22. Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational modeling of glucose uptake by SGLT1 and Apical GLUT2 in the enterocyte. Front Physiol. 2021;12:699152. doi:10.3389/fphys.2021.699152.
23. Párrizas M, Maestro MA, Boj SF, et al. Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol. 2001;21(9):3234-3243. doi:10.1128/MCB.21.9.3234-3243.2001.
24. Ono Y, Kataoka K. MafA, NeuroD1, and HNF1β synergistically activate the Slc2a2 (Glut2) gene in β-cells. J Mol Endocrinol. 2021;67(3):71-82. doi:10.1530/JME-20-0339.
25. Yang MX, Coates RF, Ambaye A, et al. NKX2.2, PDX-1 and CDX-2 as potential biomarkers to differentiate well-differentiated neuroendocrine tumors. Biomark Res. 2018;6:15. doi:10.1186/s40364-018-0129-8.
26. Anderson KR, Torres CA, Solomon K, et al. Cooperative transcriptional regulation of the essential pancreatic islet gene NeuroD1 (beta2) by Nkx2.2 and neurogenin 3. J Biol Chem. 2009;284(45):31236-31248. doi:10.1074/jbc.M109.048694.
27. Heremans Y, Van De Casteele M, in’t Veld P, et al. Recapitulation of embryonic neuroendocrine differentientiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol. 2002;159(2):303-312. doi:10.1083/jcb.200203074.
28. Rukstalis JM, Habener JF. Neurogenin3: A master regulator of pancreatic islet differentiation and regeneration. Islets. 2009;1(3):177-184. doi:10.4161/isl.1.3.9877.
29. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240. doi:10.1186/s13287-017-0694-z.
30. Ouyang J, et al 2006. Pax6 overexpression suppresses cell proliferation and retards the cell cycle in corneal epithelial cells. Invest Ophthalmol Vis Sci. 47(6):2397-407. doi: 10.1167/iovs.05-1083.
31. Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. Int J Mol Sci. 2022;23(11):6115. doi:10.3390/ijms23116115.
32. Matsuoka TA, Kaneto H, Miyatsuka T, et al. Regulation of MafA expression in pancreatic β-cells in db/db mice with diabetes. Diabetes. 2010;59(7):1709-1720. doi:10.2337/db08-0693.
33. Liang J, Chirikjian M, Pajvani UB, Bartolomé A. MafA regulation in β-cells: from transcriptional to Post Translational mechanisms. Biomolecules. 2022;12(4):535. doi:10.3390/biom12040535.
34. Fujimoto K, Polonsky KS. Pdx1 and other factors that regulate pancreatic beta-cell survival. Diabetes Obes Metab Suppl. 2009;4(suppl 4):30-37. doi:10.1111/j.1463-1326.2009.01121.x.
35. Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res. 2013;97(3):393-403. doi:10.1093/cvr/cvs426.
36. Martinez SC, Cras-Méneur C, Bernal-Mizrachi E, Permutt MA. Glucose regulates FoxO1 through insulin receptor signaling in the pancreatic islet beta-cell. Diabetes. 2006;55(6):1581-1591. doi:10.2337/db05-0678.
37. Singh U, Quintanilla RH, Grecian S, Gee KR, Rao MS, Lakshmipathy U. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev Rep. 2012;8(3):1021-1029. doi:10.1007/s12015-012-9359-6.
38. Raghavan PR. Metadichol® Is a Nano Lipid Emulsion That Expresses All 48 Nuclear Receptors in Stem and Somatic Cells T; 2022. doi:10.21203/rs.3.rs-1797646/v4.
39. Miyazaki S, Taniguchi H, Moritoh Y, et al. nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic β-cells. Diabetes. 2010;59(11):2854-2861. doi:10.2337/db09-1897.
40. Ghyselinck NB, Gregg Duester G. Retinoic acid signaling pathways. Development. 2019;46:dev167502. doi:10.1242/dev.167502.
41. Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. Diabetes Metab. 2013;39(6):478-484. doi:10.1016/j.diabet.2013.07.005.
42. Jakaria M, Haque ME, Cho DY, Azam S, Kim IS, Choi DK. Molecular insights into NR4A2(Nurr1): an emerging target for neuroprotective therapy against neuroinflammation and neuronal cell death. Mol Neurobiol. 2019;56(8):5799-5814. doi:10.1007/s12035-019-1487-4.
43. Martin Vázquez EM, Cobo-Vuilleumier N, Araujo Legido R, et al. NR5A2/LRH-1 regulates the PTGS2-PGE2-PTGER1 pathway contributing to pancreatic islet survival and function. iscience. 2022;25(5):104345. doi:10.1016/j.isci.2022.104345.
44. Alatshan A, Benkő S. Nuclear receptors as multiple regulators of NLRP3 inflammasome function. Front Immunol. 2021;12:630569. doi:10.3389/fimmu.2021.630569.
45. Hale MA, Swift GH, Hoang CQ, et al. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development. 2014;141(16):3123-3133. doi:10.1242/dev.109405.
46. Hammer SS, Vieira CP, McFarland D, et al. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia. 2021;64(7):1674-1689. doi:10.1007/s00125-021-05431-5.
47. Elibol B, Kilic U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol. 2018;9:614. doi:10.3389/fendo.2018.00614.
48. Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 2019;24:36. doi:10.1186/s11658-019-0158-9.
49. Blanchet E, Pessemesse L, Feillet-Coudray C, et al. p43, a truncated form of thyroid hormone receptor α, regulates maturation of pancreatic β cells. Int J Mol Sci. 2021;22(5):2489. doi:10.3390/ijms22052489.
50. Guo P, Zhang T, Lu A, et al. Specific reprogramming of alpha cells to insulin-producing cells by short glucagon promoter-driven Pdx1 and MafA. Mol Ther Methods Clin Dev. 2023 February 11;28:355-365. doi:10.1016/j.omtm.2023.02.003.
51. Sivachenko AY, Yuryev A, Daraselia N, Mazo I. Molecular networks in microarray analysis. J Bioinform Comput Biol. 2007;5(2B):429-456. doi:10.1142/s0219720007002795.
52. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics. 2003;19(16):2155-2157. doi:10.1093/bioinformatics/btg290.
53. Tomczak A, Mortensen JM, Winnenburg R, et al. Interpretation of biological experiments changes with evolution of the gene ontology and its annotations. Sci Rep. 2018;8(1):5115. doi:10.1038/s41598-018-23395-2.
54. Raghavan PR. Metadichol® a novel agonist of the anti-aging klotho gene in cancer cell lines. J Cancer Sci Ther. 2018;10(11):351-357. doi:10.4172/1948-5956.1000567.
55. Raghavan PR. Metadichol, an agonist that expresses the antiaging gene klotho in various cell lines," has been posted to Research Square. It Has Been Assigned a. rs.3.rs-2635049/v1. doi and is now a permanent and citable part of the scholarly record. The DOI is: 10.21203.
56. Alemán CL, Más R, Hernández C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87. doi:10.1016/0378-4274(94)90147-3.
57. Alemán CL, Más Ferreiro R, Noa Puig M, Rodeiro Guerra I, Hernández Ortega C, Capote A. Carcinogenicity of policosanol in Sprague Dawley rats: a 24-month study. Teratog Carcinog Mutagen. 1994;14(5):239-249. doi:10.1002/tcm.1770140505.
58. Alemán CL, Puig MN, Elías EC, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573-578. doi:10.1016/0278-6915(95)00026-x.
59. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-245. doi:10.1007/978-1-61779-080-5_20.
60. Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, et al. Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res. 2022;50(19):10981-10994. doi:10.1093/nar/gkac941.
61. Ma X, Zhu Saiyong. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration. Acta Biochim Biophys Sin (Shanghai). 2017;49(4):289-301. doi:10.1093/abbs/gmx008.
62. Raghavan PR. Metadichol® and vitamin C increase in vivo, an open-label study. Vitam Miner. 2017;6:163.
63. Raghavan PR. Metadichol® induced high levels of vitamin C: case studies. Vitam Miner. 2017;6:169. doi:10.4172/2376-1318.1000169.
64. Raghavan PR. Metadichol®, vitamin C and GULO gene expression in mouse adipocytes. Biol Med (Aligarh). 2018;10(1):426. doi:10.4172/0974-8369.1000426.
65. Raghavan PR. Metadichol® Induced Expression of Neuronal Transcription Factors with Human Dermal Cells; 2022. doi:10.21203/rs.3.rs-1983481/v1.
66. Raghavan PR. Metadichol Is a Natural Ligand for Expressing Yamanaka Reprogramming Factors in Somatic and Primary Cancer Cell Lines This Is a Preprint; It Has Not Been Peer-Reviewed by a Journal. doi:10.21203/rs.3.rs-1727437/v4.
67. Raghavan PR. Metadichol treatment of fibroblasts and embryonic stem cells regulates key cardiac progenitors. Cardiol. Cardiovasc Med. 2022;7:322-330.
68. Raghavan PR. A multi gene targeting approach to treating liver diseases with Metadichol®. J Cytokine Biol. 2018;3:126. doi:10.4172/2576-3881.1000126.