Role of metal complexes in oxidative stress and ROS generation leading to Cancer

Main Article Content

Subhajit Mahanty Dipankar Saha Soumitra Kumar Choudhuri Surajit Majumder

Abstract

Reactive oxygen species (ROS) are recognized as essential participants in normal cellular processes, while their intricate involvement in the emergence of various diseases, notably cancer, has garnered significant attention. Elevated levels of ROS isassociated with pro-tumorigenic signalling, heightened cell survival, increased proliferation, and DNA damage, thereby making substantial contributions to the genetic instability. Intriguingly, at elevated levels, ROS paradoxically initiate anti-tumorigenic signalling pathways, thereby instigating cell death through oxidative stress. In this comprehensive review, a focus is given on ROS generation, which encompasses both endogenous and exogenous sources that collectively referred to as oxidative stress. To provide a comprehensive understanding, an exploration of the structural, chemical, and biochemical aspects of free radicals is undertaken.Diverse sources contributing to ROS generation, including metal-mediated free radical formation is also discussed. This review additionally conducts an in-depth examination of oxidative stress within the context of cancer. Moreover, noteworthy contributions of key antioxidant enzymes, namely, superoxide dismutase, catalaseand glutathione peroxidase over the multifaceted landscape of carcinogenesis have been discussed, drawing insights from a multitude of studies. Understanding the intricate interplay between pro- and anti-tumorigenic ROS signalling pathways offers a multitude of potential avenues for cancer therapy. The disrupted redox balance observed in cancer cells presents promising opportunities for ROS manipulation, thereby emerging as a viable and innovative treatment strategy. This present review may serve as an invaluable resource, offering profound insights into the multifaceted roles of ROS in cancer while simultaneously highlighting their therapeutic potential, thereby paving the way for novel and effective cancer interventions.

Keywords: ROS, Oxidative stress, Metal complexes, Cancer

Article Details

How to Cite
MAHANTY, Subhajit et al. Role of metal complexes in oxidative stress and ROS generation leading to Cancer. Medical Research Archives, [S.l.], v. 11, n. 11, nov. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4661>. Date accessed: 16 may 2024. doi: https://doi.org/10.18103/mra.v11i11.4661.
Section
Research Articles

References

1. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990; 186:1-85. doi:10.1016/0076-6879(90) 86093-b

2. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3-4):222-230. doi:10.1016/s0891-5849(00)00317-8

3. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004; 266(1-2):37-56. doi:10.1023/ b:mcbi.0000049134.69131.89

4. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004; 11(9):1163-1182. doi:10. 2174/0929867043365323

5. Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr. 1996; 16:33-50. doi:10.1146/annurev.nu.16.070196.000341

6. Park MT, Kim MJ, Kang YH, et al. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood. 2005; 105(4):1724-1733. doi:10.1182/blood-2004-07-2938

7. Hwang JT, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. BiochemBiophys Res Commun. 2005; 332(2):433-440. doi:10.1016/ j.bbrc.2005.04.143

8. Izeradjene K, Douglas L, Tillman DM, Delaney AB, Houghton JA. Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res. 2005; 65(16):7436-7445. doi:10.1158/0008-5472.CAN-04-2628

9. Durackova Z. Some current insights into oxidative stress. Physiol Res. 2010; 59(4):459-469. doi:10.33549/physiolres.931844

10. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. BiochemPharmacol. 1999; 57(3):231-245. doi:10.1016/s0006-2952(98) 00227-5

11. Fridovich I. The biology of oxygen radicals. Science. 1978; 201(4359):875-880. doi:10.1126/science.210504

12. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995; 92(18):8115-8119. doi:10.1073/pnas.92.18.8115

13. Goossens V, De Vos K, Vercammen D, et al. Redox regulation of TNF signaling. Biofactors. 1999; 10(2-3):145-156. doi: 10.1002/biof.5520100210

14. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009; 20(7):332-340. doi:10.1016/j.tem.2009. 04.001.

15. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003; 3(4):276-285. doi:10.1038/nrc1046

16. Schraufstätter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988; 82(3):1040-1050. doi:10.1172/JCI113660

17. Fang J, Seki T, Maeda H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009; 61(4):290-302. doi:10.1016/j.addr. 2009.02.005

18. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett. 2009; 282(2):125-136. doi:10. 1016/j.canlet.2008.12.011

19. Visconti R, Grieco D. New insights on oxidative stress in cancer. CurrOpin Drug Discov Devel. 2009; 12(2):240-245.

20. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J EurAcad Dermatol Venereol. 2003; 17(6):663-669. doi:10.1046/j.1468-3083.2003.00751.x

21. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003; 167(12):1600-1619. doi:10.1164/rccm. 200212-1479SO

22. Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005; 135(5):969-972. doi:10.1093/jn/ 135.5.969

23. Maeda H, Hori S, Ohizumi H, et al. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ. 2004; 11(7):737-746. doi:10.1038/sj.cdd. 4401389

24. Morales MC, Pérez-Yarza G, Nieto-Rementeria N, et al. Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplasic agent N-(4-hydroxyphenyl) retinamide. Anticancer Res. 2005; 25(3B):1945-1951.

25. Anuszewska EL, Gruber BM, Koziorowska JH: Studies on adaptation to adriamycin in cells pretreated with hydrogen peroxide. BiochemPharmacol 1997, 54:597-603.

26. Minelli A, Bellezza I, Conte C, Culig Z. Oxidative stress-related aging: A role for prostate cancer?.BiochimBiophys Acta. 2009; 1795(2):83-91. doi:10.1016/ j.bbcan.2008.11.001

27. Powis, G. & Prough, R. A. (1987) Metabolism and action of anti-cancer drugs. London ; Taylor & Francis.

28. Wang AL, Tew KD. Increased glutathione-S-transferase activity in a cell line with acquired resistance to nitrogen mustards. Cancer Treat Rep. 1985;69(6):677-682

29. Waxman DJ. Glutathione S-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy--a review. Cancer Res. 1990; 50(20):6449-6454.

30. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006; 391(5):499-510. doi:10.1007/s00423-006-0073-1

31. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6):883-899. doi:10.1016/j.cell. 2010.01.025

32. Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. CurrOpin Genet Dev. 2010; 20(1):65-71. doi:10.1016/j.gde.2009.11.004

33. Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 2009; 8(13):2005-2013. doi:10.4161/cc.8.13.8985

34. Kang YH, Lee E, Choi MK, et al. Role of reactive oxygen species in the induction of apoptosis by alpha-tocopheryl succinate. Int J Cancer. 2004; 112(3):385-392. doi:10.1002/ ijc.20424

35. Wartenberg M, Ling FC, Schallenberg M, et al. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem. 2001; 276(20):17420-17428. doi:10.1074/jbc.M100141200

36. Garodia P, Ichikawa H, Malani N, Sethi G, Aggarwal BB. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J Soc Integr Oncol. 2007; 5(1):25-37. doi:10.2310/7200.2006.029

37. Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients?.CurrOpinPharmacol. 2009; 9(4):351-369. doi:10.1016/j.coph.2009.06. 020

38. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010; 31(1):37-49. doi:10.1093/carcin/bgp272

39. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990; 323(18): 1228-1233. doi:10.1056/NEJM1990 11013231802

40. Gillen CD, Walmsley RS, Prior P, Andrews HA, Allan RN. Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut. 1994; 35(11):1590-1592. doi:10.1136/gut.35.11.1590

41. Ekbom A, McLaughlin JK, Nyrén O. Pancreatitis and the risk of pancreatic cancer. N Engl J Med. 1993; 329(20):1502-1503. doi:10.1056/NEJM199311113292016

42. Coussens, L. M.; Werb, Z. Inflammation and cancer. Nature 420:860–867; 2002.

43. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008; 659(1-2):15-30. doi:10.1016/j.mrrev.2008.03.002

44. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12(10):1161-1208. doi:10.2174/092986 7053764635

45. Inoue M, Sato EF, Nishikawa M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003; 10(23):2495-2505. doi:10.2174/ 0929867033456477

46. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002; 282(2):C227-C241. doi:10.1152 /ajpcell.00112.2001

47. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 1996; 12(4):274-277. doi:10.1016/s0899-9007 (96)00000-8

48. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160(1):1-40. doi:10.1016/j.cbi.2005.12.009

49. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative Stress and Oxidative Damage in Carcinogenesis. Toxicologic Pathology. 2010; 38(1):96-109. doi:10.1177/0192623309356453

50. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev PharmacolToxicol. 2004; 44:239-267. doi:10 .1146/annurev.pharmtox.44.101802.121851

51. Augusto O, Truzzi DR. Carbon dioxide redox metabolites in oxidative eustress and oxidative distress. Biophys Rev. 2021; 13 (6):889-891. Published 2021 Nov 6. doi:10.1007/s12551-021-00860-3

52. Fridovich I. Biological effects of the superoxide radical. Arch BiochemBiophys. 1986; 247(1):1-11. doi:10.1016/0003-9861 (86)90526-6

53. Desideri A, Falconi M. Prokaryotic Cu,Zn superoxide dismutases. Biochem Soc Trans. 2003; 31(Pt 6):1322-1325. doi:10.1042/ bst0311322

54. Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994; 17(3):235-248. doi:10.1016/0891-5849(94)90079-5

55. Liochev SI, Fridovich I. The role of O2.- in the production of HO.: in vitro and in vivo. Free Radic Biol Med. 1994; 16(1):29-33. doi:10.1016/0891-5849(94)90239-9

56. Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med. 2004; 37(12):1921-1942. doi:10.1016/j. freeradbiomed.2004.09.010

57. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995; 18(2):321-336. doi:10.1016/0891-5849(94)00159-h

58. Pekárková I, Parara S, Holecek V, et al. Does exogenous melatonin influence the free radicals metabolism and pain sensation in rat?.Physiol Res. 2001;50(6):595-602

59. Liochev SI, Fridovich I. The Haber-Weiss cycle -- 70 years later: an alternative view. Redox Rep. 2002; 7(1):55-60. doi:10.1179/ 135100002125000190

60. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000; 304(1):55-68. doi:10.1006/ jmbi.2000.4173.

61. Pláteník J, Stopka P, Vejrazka M, Stípek S. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radic Res. 2001; 34(5):445-459. doi:10.1080/107 15760100300391

62. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999; 284(5415): 805-808. doi:10.1126/ science.284.5415.805

63. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes (1). Free Radic Biol Med. 2002; 33(8):1037-1046. doi:10.1016/s0891-5849(02)01006-7

64. Burcham PC. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis. 1998; 13(3):287-305. doi:10.1093/mutage/13.3.287

65. Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids. 1995;30(4):277-290. doi:10.1007/BF02536034

66. Chen F, Ding M, Castranova V, Shi X. Carcinogenic metals and NF-kappaB activation. Mol Cell Biochem. 2001;222(1-2):159-171.

67. Halliwell, B. and Gutteridge, J.M.C. Free Radicals in Biology and Medicine. In: Halliwell, B. and Gutteridge, J.M.C., Eds., Free Radicals in Biology and Medicine, 3rd Edition, 1999. Oxford University Press, Oxford, 1-25.

68. Daniel KG, Harbach RH, Guida WC, Dou QP. Copper storage diseases: Menkes, Wilsons, and cancer. Front Biosci. 2004;9:2652-2662. Published 2004 Sep 1. doi:10.2741/1424

69. Olivares M, Pizarro F, Speisky H, Lönnerdal B, Uauy R. Copper in infant nutrition: safety of World Health Organization provisional guideline value for copper content of drinking water. J Pediatr Gastroenterol Nutr. 1998; 26(3):251-257. doi:10.1097/ 00005176-199803000-0000392.

70. Coates RJ, Weiss NS, Daling JR, Rettmer RL, Warnick GR. Cancer risk in relation to serum copper levels. Cancer Res. 1989; 49(15):4353-4356.

71. Wu T, Sempos CT, Freudenheim JL, Muti P, Smit E. Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol. 2004; 14(3):195-201. doi:10.1016/S1047-2797(03)00119-4

72. Majumder S, Panda GS, Kumar Choudhuri S. Synthesis, characterization and biological properties of a novel copper complex. Eur J Med Chem. 2003; 38(10):893-898. doi:10.1016/j.ejmech.2003.08.002

73. Majumder. S., Dutta. P, Mookerjee A, and Choudhuri, S. The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells. Chemico-biological interactions. 2006; 159.90-103. Doi:10.1016/j.cbi.2005.10.044.

74. Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci U S A. 1993; 90(17):8013-8017. doi:10.1073/pnas.90.17.8013

75. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993; 49(3):481-493. doi:10.1093/ oxfordjournals.bmb.a072625

76. Goldstein GW. Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology. 1993;14(2-3): 97-101

77. Predki PF, Sarkar B. Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions. J Biol Chem. 1992;267 (9):5842-5846

78. Yamashita N, Murata M, Inoue S, Burkitt MJ, Milne L, Kawanishi S. Alpha-tocopherol induces oxidative damage to DNA in the presence of copper(II) ions. Chem Res Toxicol. 1998; 11(8):855-862. doi:10.1021/tx970129v

79. Gokhale NH, Padhye SS, Padhye SB, Anson CE, Powell AK. Copper complexes of carboxamidrazone derivatives as anticancer agents. 3. Synthesis, characterization and crystal structure of [Cu(appc)Cl2]. Inorg Chim Acta 2001; 319:90–4.

80. Berg D, Gerlach M, Youdim MB, et al. Brain iron pathways and their relevance to Parkinson's disease [published correction appears in J Neurochem 2002 Feb;80(4):719]. J Neurochem. 2001; 79(2):225-236. doi:10. 1046/j.1471-4159.2001.00608.x

81. Siah CW, Trinder D, Olynyk JK. Iron overload. Clin Chim Acta. 2005; 358(1-2):24-36. doi:10.1016/j.cccn.2005.02.022

82. Ullén H, Augustsson K, Gustavsson C, Steineck G. Supplementary iron intake and risk of cancer: reversed causality?. Cancer Lett. 1997; 114(1-2):215-216. doi:10.1016/ s0304-3835(97)04666-1

83. Babbs CF. Free radicals and the etiology of colon cancer. Free Radic Biol Med. 1990;8(2):191-200. doi:10.1016/0891-5849 (90)90091-v

84. Nelson RL. Dietary iron and colorectal cancer risk. Free Radic Biol Med. 1992;12(2):161-168. doi:10.1016/0891-5849 (92)90010-e

85. Kowdley KV. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology. 2004; 127(5 Suppl 1):S79-S86. doi:10.1016/ j.gastro.2004.09.019

86. Deugnier Y, Turlin B. Iron and hepatocellular carcinoma. J Gastroenterol Hepatol. 2001; 16(5):491-494. doi:10.1046/ j.1440-1746.2001.02430.x

87. Bhasin G, Kauser H, Athar M. Iron augments stage-I and stage-II tumor promotion in murine skin. Cancer Lett. 2002; 183(2):113-122. doi:10.1016/s0304-3835(02) 00116-7

88. Gosriwatana I, Loreal O, Lu S, Brissot P, Porter J, Hider RC. Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem. 1999; 273(2):212-220. doi:10.1006/abio.1999.4216

89. Dayan AD, Paine AJ. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol. 2001; 20(9):439-451. doi:10.1191/09603270168269 3062

90. Kasprzak KS. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radic Biol Med. 2002; 32(10):958-967. doi:10.1016/s0891-5849(02) 00809-2

91. Cieslak-Golonka, Toxic and mutagenic effects of chromium (VI). A review, Polyhedron. 1996; 15. 3667–3689

92. Singh J, Carlisle DL, Pritchard DE, Patierno SR. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review). Oncol Rep. 1998; 5(6):1307-1318. doi:10.3892/or.5.6.1307

93. Zhitkovich A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol. 2005;18 (1):3-11. doi:10.1021/tx049774+

94. Kilic E, Saraymen R, Demiroglu A, Ok E. Chromium and manganese levels in the scalp hair of normals and patients with breast cancer. Biol Trace Elem Res. 2004; 102(1-3):19-25. doi:10.1385/BTER:102:1-3:019

95. Lee YW, Klein CB, Kargacin B, et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995; 15(5):2547-2557. doi:10.1128/MCB.15.5.2547

96. Barceloux DG. Nickel [published correction appears in J Toxicol Clin Toxicol 2000; 38(7):813]. J Toxicol Clin Toxicol. 1999; 37(2):239-258. doi:10.1081/clt-100102423

97. Grimsrud TK, Berge SR, Haldorsen T, Andersen A. Can lung cancer risk among nickel refinery workers be explained by occupational exposures other than nickel?. Epidemiology. 2005; 16(2):146-154. doi:10. 1097/01.ede.0000152902.48916.d7

98. Feron VJ, Arts JH, Kuper CF, Slootweg PJ, Woutersen RA. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol. 2001; 31(3):313-347. doi:10.1080/200140911 11712

99. Banerjee K, Biswas MK, Choudhuri SK. A newly synthesized nickel chelate can selectively target and overcome multidrug resistance in cancer through redox imbalance both in vivo and in vitro. J BiolInorg Chem. 2017; 22(8):1223-1249. doi:10.1007/s00775-017-1498-4

100. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000; 279(6):L1005-L1028. doi:10.1152/ajplung.2000.279.6.L1005

101. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000; 28(10):1456-1462. doi:10.1016/s0891-5849(00)00252-5

102. Sah VP, Seasholtz TM, Sagi SA, Brown JH. The role of Rho in G protein-coupled receptor signal transduction. Annu Rev PharmacolToxicol. 2000; 40:459-489. doi:10. 1146/annurev.pharmtox.40.1.459

103. Palmer HJ, Paulson KE. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev. 1997; 55(10):353-361. doi:10.1111/j.1753-4887.1997.tb01561.x

104. Lowenstein CJ, Dinerman JL, Snyder SH. Nitric oxide: a physiologic messenger. Ann Intern Med. 1994; 120(3):227-237. doi:10.7326/0003-4819-120-3-199402010-00009

105. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005; 10:1881-1896. Published 2005 May 1. doi:10.2741/ 1667

106. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969; 244(22):6049-6055.

107. McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans?. Free Radic Biol Med. 1999;26(7-8):1034-1053. doi:10.1016/s0891-5849(98) 00302-5

108. Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999; 32(8):595-603. doi:10.1016/s0009-9120(99)00075-2

109. Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003; 31(Pt 6):1441-1444. doi:10.1042/bst0311441

110. Oberley LW, Oberley TD. Role of antioxidant enzymes in cell immortalization and transformation. Mol Cell Biochem. 1988; 84(2):147-153. doi:10.1007/BF00421049

111. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 2002; 21(14):2245-2252. doi:10.1038/sj.onc.1205291

112. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED. Nickel superoxide dismutase structure and mechanism. Biochemistry. 2004; 43(25):8038-8047. doi: 10.1021/bi0496081

113. Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J NutrBiochem. 2005; 16(10):577-586. doi:10.1016/j.jnutbio.2005.05.013

114. Ji Y, Akerboom TP, Sies H, Thomas JA. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch BiochemBiophys. 1999; 62(1):67-78. doi:10. 1006/abbi.1998.1013

115. Karoui H, Hogg N, Fréjaville C, Tordo P, Kalyanaraman B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. ESR-spin trapping and oxygen uptake studies. J Biol Chem. 1996; 271(11):6000-6009. doi:10.1074/jbc.271.11. 6000

116. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992; 257(5076):1496-1502. doi:10.1126/science. 1523409

117. Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000; 28(4):625-635. doi:10.1016/s0891 -5849(99)00275-0

118. Majumder S, Dhabal D, Chowdhury S. Glutathione and Vitamin D to Prevent COVID-19: A Review. Indian Journal of Natural Sciences. 2021;12(69): 36775-36779

119. Basu S, Ganguly A, Chakraborty P, et al. Targeting the mitochondrial pathway to induce apoptosis/necrosis through ROS by a newly developed Schiff's base to overcome MDR in cancer. Biochimie. 2012;94(1):166-183. doi:10.1016/j.biochi.2011.10.004

120. Banerjee K, Ganguly A, Chakraborty P, et al. ROS and RNS induced apoptosis through p53 and iNOS mediated pathway by a dibasic hydroxamic acid molecule in leukemia cells. Eur J Pharm Sci. 2014; 52:146-164. doi:10.1016/j.ejps.2013.11.009

121. Choudhuri SK. Gluthione Enrichment as a Possible Prevention and Treatment for COVID-19. Int J Pharm Sci & Scient Res.2020 6(4), 65-66

122. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. ToxicolPathol. 2002; 30(6):620-650. doi:10. 1080/01926230290166724

123. Blot WJ, Li JY, Taylor PR, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst. 1993; 85(18):1483-1492. doi:10.1093/jnci/85.18.1483

124. Moran LK, Gutteridge JM, Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem. 2001;8(7):763-772. doi:10.2174/0929867013372904

125. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001; 30(11):1191-1212. doi:10.1016/ s0891-5849(01)00480-4

126. Arrigo AP. Gene expression and the thiol redox state. Free Radic Biol Med. 1999; 27(9-10):936-944. doi:10.1016/s0891-5849(99) 00175-6

127. Voehringer DW. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med. 1999;27(9-10):945-950. doi:10.1016/s0891-5849(99)00174-4

128. McEligot AJ, Yang S, Meyskens FL Jr. Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu Rev Nutr. 2005; 25:261-295. doi:10.1146/annurev.nutr.25.050304.092633

129. Kern JC, Kehrer JP. Free radicals and apoptosis: relationships with glutathione, thioredoxin, and the BCL family of proteins. Front Biosci. 2005; 10:1727-1738. Published 2005 May 1. doi:10.2741/1656

130. Patenaude A, Murthy MR, Mirault ME. Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci. 2005; 62(10):1063-1080. doi:10.1007/ s00018-005-4541-5

131. Seemann S, Hainaut P. Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene. 2005; 24(24):3853-3863. doi:10. 1038/sj.onc.1208549

132. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998; 273(19):11401-11404. doi:10.1074/jbc.273.19.11401

133. Evens AM. Motexafin gadolinium: a redox-active tumor selective agent for the treatment of cancer. CurrOpin Oncol. 2004; 16(6):576-580. doi:10.1097/01.cco.00001420 73.29850.98