Molecular biomarkers in Electrohypersensitivity and Multiple Chemical Sensitivity: How They Can Help Diagnosis, Follow-Up, and in Etiopathologic Understanding.
Main Article Content
Abstract
Electrohypersensitivty (EHS) and multiple chemical sensitivity (MCS) are new worldwide emerging neurologic disorders in the framework of sensitivity-related environmental pathology. We have recently extended and confirmed our previous observation showing that EHS and MCS share clinically identical symptoms and may co-exist as a unique, common, sensitivity-related neurologic syndrome in 25% of the cases. There is presently no published biological study of these disorders, except the one we have previously published as preliminary. In the present study, we show that EHS and MCS and the combined syndrome share identical biochemical changes. More precisely, by measuring levels of peripheral blood and urine molecular biomarkers in a cohort of 2,018 consecutive cases, we show that both disorders and the combined syndrome can be objectively characterized, in about 90% of the cases, by a decrease in the production of 6-hydroxymelatonin sulfate in urine, while in 30-50% they are characterized by increased levels of histamine and of heat shock proteins (HSP) 27 and/or 70, and of protein S100B and nitrotyrosine in the peripheral blood. Increased levels of histamine and HSP are indicators of low grade inflammation while increased levels of protein S100B and nitrotyrosine are indicators of blood-brain barrier disruption/opening. In addition, we show that in about 15% of the cases anti-myelin autoantibodies can be detected in the peripheral blood, accounting for the occurrence of an autoimmune response. Sensitivity, specificity and reproducibility of the biochemical tests are discussed, as well as the role of these indicators used as biomarkers for the diagnosis and follow-up of patients. We also discuss cases with undetectable biological change for which they can be nevertheless diagnosed by cerebral neurotransmitters analysis in urine and brain imaging. On the basis of these biological data it is suggested that EHS and/or MCS are new brain disorders, generated via a common etiopathogenic mechanism.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Rea WJ, Pan Y, Fenyves EF, et al. Electromagnetic field sensitivity. J Bioelectr. 1991;10:214–256. Doi: 10.3109/15368379109031410
3. Report of the Workshop on Multiple Chemical Sensitivities (MCS), Berlin, Germany, (21–23 February 1996) https://apps.who.int/iris/handle/10665/26723/browse?authority=Multiple+Chemical+Sensitivity&type=mesh
4. Bartha L, Baumzweiger W, Buscher DS, et al. Multiple chemical sensitivity: a 1999 consensus. Arch Environ Health. 1999;54:147–149. Doi: 10.1080/00039899909602251
5. WHO (World Health Organization). Electromagnetic Fields and Public Health, Electromagnetic Hypersensitivity; WHO Fact Sheet No. 296. 2005. World Health Organization, Geneva, Switzerland.
6. Mild KH, Repacholi M, van Deventer E, Ravazzani P. Electromagnetic hypersensitivity. In: Proceedings of the WHO International Seminar and Working Group Meeting on EMF Hypersensitivity, Prague, Czech Republic, 25–27 October 2004. World Health Organization, Geneva, Switzerland. 2006. ISBN 92-4-159412-8.
7. Belpomme D, Campagnac C, Irigaray P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev Environ Health. 2015;30:251–271. Doi:10.1515/reveh-2015-0027
8. Belpomme D, Irigaray P. Electrohypersensitivity as a newly identified and characterized neurologic pathological disorder: how to diagnose, treat, and prevent it. Int J Mol Sci. 2020;21:1915. Doi: 10.3390/ijms21061915.
9. Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: an overview and medical assessment. Env Res. 2022;212:113374. Doi: 10.1016/j.envres.2022.113374.
10. Belpomme D, Irigaray P. Electro-hypersensitivity as a Worldwide, Man-made Electromagnetic Pathology: A Review of the Medical Evidence. In Electromagnetic Fields of Wireless Communications: Biological and Health Effects, Panagopoulos Ed.; 2023, p. 297-367.
11. WHO (World Health Organization). Framework for Developing Health-Based EMF Standards. WHO, Geneva, Switzerland, 2006; ISBN 9241594330.
12. Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC. Elevated risk of Alzheimer's disease among workers with likely electromagnetic field exposure. Neurology. 1996;47:1477-1481. Doi: 10.1212/wnl.47.6.1477.
13. Garcia AM, Sisternas A, Hoyos SP. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int J Epidemiol. 2008;37:329–340. Doi : 10.1093/ije/dym295.
14. Pearson TA, Mensah GA, Alexander RW, et al. Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499-511. Doi: 10.1161/01.cir.0000052939.59093.45.
15. Belsey R, Deluca HF, Jr. Potts JT. Competitive binding assay for vitamin D and 25-OH vitamin D. J Clin Endocrinol Metab. 1971;33:554-557. Doi: 10.1210/jcem-33-3-554.
16. Lebel B, Arnoux B, Chanez N, et al. Ex vivo pharmacologic modulation of basophil histamine release in asthmatic patients. Allergy. 1996;51:394-400. Doi: 10.1111/j.1398-9995.1996.tb04636.x.
17. Dessaint JP, Bout D, Wattre P, Capron A. Quantitative determination of specific IgE antibodies to Echinococcus granulosus and IgE levels in sera from patients with hydatid disease. Immunology. 1975;29:813-823.
18. De AK, Roach SE. Detection of the soluble heat shock protein 27 (hsp27) in human serum by an ELISA. J Immunoassay Immunochem. 2004;25:159-170. Doi: 10.1081/ias-120030525.
19. Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest. 1998;27:367-377. Doi: 10.3109/08820139809022710.
20. Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration. Arch Biochem Biophys. 1992;298:431-437. Doi: 10.1016/0003-9861(92)90431-u.
21. Smit LH, Korse CM, Bonfrer JM. Comparison of four different assays for determination of serum S-100B. Int J Biol Markers. 2005;20:34-42. Doi: 10.1177/172460080502000106.
22. Arnold W, Pfaltz R, Altermatt HJ. Evidence of serum antibodies against inner ear tissues in the blood of patients with certain sensorineural hearing disorders. Acta Otolaryngol. 1985;99:437-444. Doi: 10.3109/00016488509108935.
23. Schumacher M, Nanninga A, Leidenberger F. S-35 and 1-125 radioimmunoassays for the measurement of 6-sulphatoxymelatonin in human urine. Acta Endrocinol. 1989;120:132.
24. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–466. Doi: 10.1097/COH.0b013e32833ed177.
25. FDA-NIH Biomarker Working Group, (2016): BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US). 2016. www.ncbi.nlm.nih.gov/books/NBK326791/
26. Albert PJ, Proal AD, Marshall TG. Vitamin D: the alternative hypothesis. Autoimmun Rev. 2009;8:639–644. Doi: 10.1016/j.autrev.2009.02.011.
27. Marquardt DL. Histamine. Clin Rev Allergy. 1983;1:343-351. Doi: 10.1007/BF02991225.
28. Rocha SM, Pires J, Esteves M, Graça B, Bernardino L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci. 2014;8:120. Doi: 10.3389/fncel.2014.00120.
29. Greaves MW, Sabroe RA. Histamine: the quintessential mediator. J Dermatol. 1996;23:735–740. Doi: 10.1111/j.1346-8138.1996.tb02694.x.
30. Mayhan WG. Role of nitric oxide in histamine-induced increases in permeability of the blood-brain barrier. Brain Res. 1996;743:70–76. Doi: 10.1016/s0006-8993(96)01021-9.
31. Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20:131-147. Doi: 10.1023/a:1007074420772.
32. Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res. 2004;29:579–587. Doi: 10.1023/b:nere.0000014828.32200.bd.
33. Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol. 2007;78:7334–7343. Doi: 10.4049/jimmunol.178.11.7334.
34. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424. Doi: 10.1152/physrev.00029.2006.
35. Yang S, Chen Y, Deng X, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat. J Mol Neurosci. 2013;51:352–363. Doi: 10.1007/s12031-013-9990-y.
36. Kapural M, Krizanac-Bengez Lj, Barnett G, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002;940(1-2):102–104. Doi: 10.1016/s0006-8993(02)02586-6.
37. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342:1–12. Doi: 10.1016/j.cccn.2003.12.008.
38. Koh SX, Lee JK. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014;44:369–385. Doi: 10.1007/s40279-013-0119-9.
39. de Pomerai D, Daniells C, David H, et al. Non-thermal heat-shock response to microwaves. Nature. 2000;405:417–418. Doi: 10.1038/35013144.
40. French PW, Penny R, Laurence JA, McKenzie DR. Mobile phones, heat shock proteins and cancer. Differentiation. 2001;67:93–97. Doi: 10.1046/j.1432-0436.2001.670401.x.
41. Yang XS, He G-L, Hao Y-T, et al. Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull. 2012;88:371–378. doi: 10.1016/j.brainresbull.2012.04.002.
42. Kesari KK, Meena R, Nirala J, Kumar J, Verma HN. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochem Biophys. 2014;68:347–358. Doi: 10.1007/s12013-013-9715-4.
43. Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals (Basel). 2017;11:2. Doi: 10.3390/ph11010002.
44. Berberian PA, Myers W, Tytell M, Challa V, Bond MG. Immunohistochemical localization of heat shock protein-70 in normal appearing and atherosclerotic specimens of human arteries. Am J Pathol 1990;136:71–80.
45. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–634. Doi: 10.1146/annurev.cb.09.110193.003125.
46. Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–579. Doi: 10.1038/381571a0.
47. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann NY Acad Sci. 2005;1053:74–83. Doi: 10.1196/annals.1344.007.
48. Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem. 2012;123:542–554. Doi: 10.1111/j.1471-4159.2012.07927.x.
49. Kelly S, Yenari MA. Neuroprotection: heat shock proteins. Curr Med Res Opin. 2002;18:s55–s60.
50. Leak RK, Zhang L, Stetler RA, et al. HSP27 protects the blood-brain barrier against ischemia-induced loss of integrity. CNS Neurol Disord Drug Targets. 2013;12:325–337. Doi: 10.2174/1871527311312030006.
51. Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology. 2009;16:71–78. Doi: 10.1016/j.pathophys.2009.01.006.
52. Ohmori H, Kanayama N. Mechanisms leading to autoantibody production: link between inflammation and autoimmunity. Curr Drug Targets Inflamm Allergy. 2003;2:232–241. Doi: 10.2174/1568010033484124.
53. Profumo E, Buttari B, Riganò R. Oxidative stress in cardiovascular inflammation: its involvement in autoimmune responses. Int J Inflam. 2011;2011:295705. Doi: 10.4061/2011/295705.
54. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. Am J Epidemiol. 1999;150:27–36. Doi: 10.1093/oxfordjournals.aje.a009914.
55. Kovács J, Brodner W, Kirchlechner V, Arif T, Waldhauser F. Measurement of urinary melatonin: a useful tool for monitoring serum melatonin after its oral administration. J Clin Endocrinol Metab. 2000;85!666–670. Doi: 10.1210/jcem.85.2.6349.
56. Heuser G, Heuser SA. Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields. Rev Environ Health. 2017;32:291–299. Doi: 10.1515/reveh-2017-0014.
57. Irigaray P, Lebar P, Belpomme D. How Ultrasonic Cerebral Tomosphygmography can Contribute to the Diagnosis of Electrohypersensitivity. J Clin Diagn Res. 2018;6:143.
58. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52:168-174. Doi: 10.1002/ana.10265.
59. Dik MG, Jonker C, Hack CE, Smit JH, Comijs HC, Eikelenboom P. Serum inflammatory proteins and cognitive decline in older persons. Neurology. 2005;64:1371-1377. Doi: 10.1212/01.WNL.0000158281.08946.68.
60. Gazerani P, Pourpak Z, Ahmadiani A, Hemmati A, Kazemnejad A. A correlation between migraine, histamine and immunoglobulin E. Scand J Immunol. 2003;57:286–290. Doi: 10.1046/j.1365-3083.2003.01216.x.
61. Grigoriev YG, Grigoriev OA, Ivanov AA, et al. Autoimmune process after long-term low-level exposure to electromagnetic field (experimental results). Part 1. Mobile communications and changes in electromagnetic conditions for the population: Need for additional substantiation of existing hygienic standards. Biophysics. 2010;55:1041-1045.
62. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336:186–195. Doi: 10.1056/NEJM199701163360306.
63. Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M. Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (Mosc.). 2006;71:S91–S95. Doi: 10.1134/s0006297906130153.
64. Xie Z, Chen F, Li WA, et al. A review of sleep disorders and melatonin. Neurol Res. 2017;39:559-565. Doi: 10.1080/01616412.2017.1315864.
65. Baliatsas C, Van Kamp I, Lebret E, Rubin GJ. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): a systematic review of identifying criteria. BMC Public Health. 2012;12: 643. Doi: 10.1186/1471-2458-12-643.
66. Belpomme D, Carlo GL, Irigaray P, et al. The critical importance of molecular biomarkers and imaging in the study of electrohypersensitivity. A scientific consensus international report. Int J Mol. 2021;22(14):7321. Doi: 10.3390/ijms22147321.
67. Dahmen N, Ghezel-Ahmadi D, Engel A. Blood laboratory findings in patients suffering from self-perceived electromagnetic hypersensitivity (EHS). Bioelectromagnetics. 2009;30:299-306. Doi: 10.1002/bem.20486.
68. Irigaray P., Garrel C., Houssay C., Mantello P., Belpomme D. Beneficial effects of a Fermented Papaya Preparation for the treatment of electrohypersensitivity self-reporting patients: results of a phase I-II clinical trial with special reference to cerebral pulsation measurement and oxidative stress analysis. FFHD. 2018; 8(2):122-144. Doi: 10.31989/ffhd.v8i2.406.
69. Belpomme D, Irigaray P. Why scientifically unfounded and misleading claim should be dismissed to make true research progress in the acknowledgment of electrohypersensibility as a new worldwide emerging pathology. Rev Environ Health. 2021;37:303-305. Doi: 10.1515/reveh-2021-0104.
70. Belpomme D, Irigaray P. Why the psychogenic or psychosomatic theories for electrohypersensitivity causality should be abandoned, but not the hypothesis of a nocebo-associated symptom formation caused by electromagnetic fields conditioning in some patients. Environ Res. 2022;114839, Online ahead of print.
71. Frick U, Rehm J, Eichhammer P. Risk perception, somatization, and self-report of complaints related to electromagnetic fields - a randomized survey study. Int J Hyg Environ Health. 2002;205:353-360. Doi: 10.1078/1438-4639-00170.
72. Rubin GJ, Hahn G, Everitt BS, Cleare AJ, Wessely S. Are some people sensitive to mobile phone signals? Within participants double blind randomised provocation study. BMJ. 2006;332:886-891. Doi: 10.1136/bmj.38765.519850.55.
73. Havas M. Electrosmog and electrosensitivity: What doctors need to know to help their patients heal. Anti-Aging Therapeutics Volume XV, Klatz R and R Goldman (Eds), A4M, Chicago, IL. 2014.
74. Belpomme D., Irigaray P. Combined Neurological Syndrome in Electrohypersensitivity and Multiple Chemical Sensitivity: A Clinical Study of 2018 Cases. J. Clin. Med. 2023;12(23):7421. Doi: https://doi.org/10.3390/jcm12237421
75. Wada H, Inagaki N, Yamatodani A, Watanabe T. Is the histaminergic neuron system a regulatory center for whole brain activity? Trends Neurosci. 1991;14:415–418. Doi: 10.1016/0166-2236(91)90034-r.
76. Onodera K, Yamatodani A, Watanabe T, Wada H. Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol. 1994;42:685–702. Doi: 10.1016/0301-0082(94)90017-5.
77. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183–1241. Doi: 10.1152/physrev.00043.2007.
78. Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci. 2013;14:472–487. Doi: 10.1038/nrn3526.
79. Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ Pollut. 2008;242:643-658. Doi: 10.1016/j.envpol.2018.07.019.
80. Padawer J. Quantitative studies with mast cells. Ann NY Acad Sci. 1963;103:87–138. Doi:10.1111/j.1749-6632.1963.tb53693.x
81. Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol. 2004;4:787–799. Doi: 10.1038/nri1460.
82. Salford LG, Brun AE, Eberhardt JL, Marmgren L, Persson BR. Nerve Cell Damage in Mammalian Brain after Exposure to Microwaves from GSM Mobile Phones. Env Health Perspec. 2003;111:881-883. Doi: 10.1289/ehp.6039.
83. Salford LG, Brun A, Sturesson K, Eberhardt JL, Persson BR. Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50, and 200 Hz. Microsc Res Tech. 1994;27:535-542. Doi: 10.1002/jemt.1070270608.
84. Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 2005;62:279-287. Doi: 10.1016/j.ijrobp.2005.01.039.
85. Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009;16:103-112. Doi: 10.1016/j.pathophys.2009.01.001
86. Stam R. Electromagnetic fields and the blood-brain barrier. Brain Res Rev. 2010;65:80-97. Doi: 10.1016/j.brainresrev.2010.06.001.
87. Oscar KJ, Hawkins TD. Microwave alteration of the blood-brain barrier system of rats. Brain Res. 1977;126:281-293. Doi: 10.1016/0006-8993(77)90726-0.
88. Merritt JH, Chamness AF, Allen SJ. Studies on blood-brain barrier permeability after microwave-radiation. Radiat Environ Biophys. 1978;15:367-377. Doi: 10.1007/BF01323461.
89. Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO. Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med. 2008;27:215-229. Doi: 10.1080/15368370802344037.
90. Ding G-R, Li K-C, Wang X-W, et al. Effect of electromagnetic pulse exposure on brain micro vascular permeability in rats. Biomed Environ Sci. 2009;22:265-268. Doi: 10.1016/S0895-3988(09)60055-6.
91. Michetti F, Corvino V, Geloso MC; et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120:644-659. Doi: 10.1111/j.1471-4159.2011.07612.x.
92. Stamataki E, Stathopoulos A, Garini E, et al. Serum S100B protein is increased and correlates with interleukin 6, hypoperfusion indices, and outcome in patients admitted for surgical control of hemorrhage. Shock. 2013;40:274–280. Doi: 10.1097/SHK.0b013e3182a35de5.
93. Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol. 1997;56:285–290.
94. Migheli A, Cordera S, Bendotti C, Atzori C, Piva R, Schiffer D. S-100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci Lett. 1999;261:25–28. Doi: 10.1016/s0304-3940(98)01001-5.
95. Irigaray P, Caccamo D, Belpomme D. Oxidative stress in electrohypersensitivity self-reporting patients: results of a prospective in vivo investigation with comprehensive molecular analysis. Int J Mol Med. 2018;42:1885–1898. Doi: 10.3892/ijmm.2018.3774.
96. Chrousos G.P, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992;267:1244–1252.
97. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redo -dependent signaling. Nature Rev Mol Cell Biol. 2014;15:411-421. Doi: 10.1038/nrm3801.