The transcription factors ISL-1 and MAFA, but not NKX6-1 Characterize a Stem-cell Derived Population of Endocrine Pancreatic Cells Capable of Controlling blood Glucose in Rodent Models of Diabetes

Main Article Content

Jeremy Ratiu Sheryl M. Southard William L. Rust

Abstract

A stem cell line, derived by reprogramming native human islet cells, consistently generates pure populations of endocrine pancreatic clusters following differentiation cues. Two protocols were developed directing the differentiation of that cell line to pancreatic cells that expressed or lacked expression of the key beta cell maturation-associated factor NKX6-1. The population of stem cell derived endocrine pancreatic clusters that was most consistently capable of regulating blood glucose in rodent models of diabetes lacked NKX6-1 but did manifest high expression of other key drivers of endocrine cell specification and maturation, ISL1 and MAFA. These data support the hypothesis that MAFA and ISL-1, but not NKX6-1, are reliable in vitro markers of committed endocrine pancreatic cells. The population with low NKX6-1 and high in vivo potency was further characterized by transcriptome profiling as an endocrine-committed population progressively maturing in vitro to a state proximal to the native islet.

Article Details

How to Cite
RATIU, Jeremy; SOUTHARD, Sheryl M.; RUST, William L.. The transcription factors ISL-1 and MAFA, but not NKX6-1 Characterize a Stem-cell Derived Population of Endocrine Pancreatic Cells Capable of Controlling blood Glucose in Rodent Models of Diabetes. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4797>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v11i12.4797.
Section
Research Articles

References

1. Witkowski P, Philipson LH, Kaufman DB, et al. The demise of islet allotransplantation in the United States: A call for an urgent regulatory update. Am J Transplant. Apr 2021;21(4):1365-1375. doi:10.1111/ajt.16397
2. Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell. May 4 2023;30(5):530-548. doi:10.1016/j.stem.2023.04.002
3. Augsornworawat P, Hogrebe NJ, Ishahak M, et al. Single-nucleus multi-omics of human stem cell-derived islets identifies deficiencies in lineage specification. Nat Cell Biol. Jun 2023;25(6):904-916. doi:10.1038/s41556-023-01150-8
4. Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol. Jul 2022;40(7):1042-1055. doi:10.1038/s41587-022-01219-z
5. Veres A, Faust AL, Bushnell HL, et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature. May 2019;569(7756):368-373. doi:10.1038/s41586-019-1168-5
6. International Stem Cell I. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun. May 15 2018;9(1):1925. doi:10.1038/s41467-018-04011-3
7. Southard SM, Kotipatruni RP, Rust WL. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One. 2018;13(9):e0203126. doi:10.1371/journal.pone.0203126
8. Zhu H, Wang G, Nguyen-Ngoc KV, et al. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell. May 8 2023;58(9):727-743 e11. doi:10.1016/j.devcel.2023.03.011
9. Ma Z, Zhang X, Zhong W, et al. Deciphering early human pancreas development at the single-cell level. Nat Commun. Sep 2 2023;14(1):5354. doi:10.1038/s41467-023-40893-8
10. Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic beta-cell functions and identity. Front Mol Biosci. 2022;9:1091757. doi:10.3389/fmolb.2022.1091757
11. Aigha, II, Abdelalim EM. NKX6.1 transcription factor: a crucial regulator of pancreatic beta cell development, identity, and proliferation. Stem Cell Res Ther. Oct 29 2020;11(1):459. doi:10.1186/s13287-020-01977-0
12. Memon B, Abdelalim EM. Stem Cell Therapy for Diabetes: Beta Cells versus Pancreatic Progenitors. Cells. Jan 23 2020;9(2)doi:10.3390/cells9020283
13. Pellegrini S, Chimienti R, Scotti GM, et al. Transcriptional dynamics of induced pluripotent stem cell differentiation into beta cells reveals full endodermal commitment and homology with human islets. Cytotherapy. Apr 2021;23(4):311-319. doi:10.1016/j.jcyt.2020.10.004
14. Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of Dynamic Function in Human Stem Cell-Derived beta Cells. Stem Cell Reports. Feb 12 2019;12(2):351-365. doi:10.1016/j.stemcr.2018.12.012
15. Johnston NR, Mitchell RK, Haythorne E, et al. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell Metab. Sep 13 2016;24(3):389-401. doi:10.1016/j.cmet.2016.06.020
16. Pavluch V, Engstova H, Spackova J, Jezek P. Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells. Sci Rep. Jan 13 2023;13(1):683. doi:10.1038/s41598-023-27985-7
17. Egozi A, Llivichuzhca-Loja D, McCourt BT, et al. Insulin is expressed by enteroendocrine cells during human fetal development. Nat Med. Dec 2021;27(12):2104-2107. doi:10.1038/s41591-021-01586-1
18. Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Single-Cell Transcriptome Profiling Reveals beta Cell Maturation in Stem Cell-Derived Islets after Transplantation. Cell Rep. Aug 25 2020;32(8):108067. doi:10.1016/j.celrep.2020.108067
19. Du W, Wang J, Kuo T, et al. Pharmacological conversion of gut epithelial cells into insulin-producing cells lowers glycemia in diabetic animals. J Clin Invest. Dec 15 2022;132(24) doi:10.1172/JCI162720
20. Melton D. The promise of stem cell-derived islet replacement therapy. Diabetologia. May 2021;64(5):1030-1036. doi:10.1007/s00125-020-05367-2
21. Singh R, Cottle L, Loudovaris T, et al. Enhanced structure and function of human pluripotent stem cell-derived beta-cells cultured on extracellular matrix. Stem Cells Transl Med. Mar 2021;10(3):492-505. doi:10.1002/sctm.20-0224
22. Zhang C, Moriguchi T, Kajihara M, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. Jun 2005;25(12):4969-76. doi:10.1128/MCB.25.12.4969-4976.2005
23. Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun. Apr 11 2016;7:11247. doi:10.1038/ncomms11247
24. Lima MJ, Muir KR, Docherty HM, et al. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas. PLoS One. 2016;11(5):e0156204. doi:10.1371/journal.pone.0156204
25. DeTomaso D, Jones MG, Subramaniam M, Ashuach T, Ye CJ, Yosef N. Functional interpretation of single cell similarity maps. Nat Commun. Sep 26 2019;10(1):4376. doi:10.1038/s41467-019-12235-0
26. Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. Oct 2017;14(10): 979-982. doi:10.1038/nmeth.4402
27. Bock C, Kiskinis E, Verstappen G, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. Feb 4 2011;144(3):439-52. doi:10.1016/j.cell.2010.12.032
28. Galdos FX, Lee C, Lee S, et al. Combined lineage tracing and scRNA-seq reveals unexpected first heart field predominance of human iPSC differentiation. Elife. Jun 7 2023;12doi:10.7554/eLife.80075
29. Weng C, Xi J, Li H, et al. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab. Dec 2020;2(12):1443-1458. doi:10.1038/s42255-020-00314-2
30. Wang L, Su Y, Huang C, et al. NANOG and LIN28 dramatically improve human cell reprogramming by modulating LIN41 and canonical WNT activities. Biol Open. Dec 5 2019;8(12)doi:10.1242/bio.047225
31. Hansson M, Tonning A, Frandsen U, et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes. Oct 2004;53(10):2603-9. doi:10.2337/diabetes.53.10.2603
32. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med. Jul 2013;30(7):803-17. doi:10.1111/dme.12159
33. Nostro MC, Sarangi F, Yang C, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. Apr 14 2015;4(4):591-604. doi:10.1016/j.stemcr.2015.02.017
34. Ediger BN, Du A, Liu J, et al. Islet-1 Is essential for pancreatic beta-cell function. Diabetes. Dec 2014;63(12):4206-17. doi:10.2337/db14-0096
35. Sasaki S, Lee MYY, Wakabayashi Y, et al. Spatial and transcriptional heterogeneity of pancreatic beta cell neogenesis revealed by a time-resolved reporter system. Diabetologia. May 2022;65(5):811-828. doi:10.1007/s00125-022-05662-0
36. Chu LF, Leng N, Zhang J, et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. Aug 17 2016;17(1):173. doi:10.1186/s13059-016-1033-x
37. Maxwell KG, Kim MH, Gale SE, Millman JR. Differential Function and Maturation of Human Stem Cell-Derived Islets After Transplantation. Stem Cells Transl Med. Mar 31 2022;11(3):322-331. doi:10.1093/stcltm/szab013
38. Pagliuca FW, Millman JR, Gurtler M, et al. Generation of functional human pancreatic beta cells in vitro. Cell. Oct 9 2014;159(2):428-39. doi:10.1016/j.cell.2014.09.040
39. Pagliuca FW, Melton DA. How to make a functional beta-cell. Development. Jun 2013;140(12):2472-83. doi:10.1242/dev.093187
40. Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. Aug 2012;61(8):2016-29. doi:10.2337/db11-1711
41. Fuchs E, Blau HM. Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell. Oct 1 2020;27(4):532-556. doi:10.1016/j.stem.2020.09.011
42. Overi D, Carpino G, Moretti M, et al. Islet Regeneration and Pancreatic Duct Glands in Human and Experimental Diabetes. Front Cell Dev Biol. 2022;10:814165. doi:10.3389/fcell.2022.814165
43. Movahedi B, Gysemans C, Jacobs-Tulleneers-Thevissen D, Mathieu C, Pipeleers D. Pancreatic duct cells in human islet cell preparations are a source of angiogenic cytokines interleukin-8 and vascular endothelial growth factor. Diabetes. Aug 2008;57(8):2128-36. doi:10.2337/db07-1705
44. Vlahos AE, Kinney SM, Kingston BR, et al. Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy. Biomaterials. Feb 2020;232:119710. doi:10.1016/j.biomaterials.2019.119710
45. Dang HP, Chen H, Dargaville TR, Tuch BE. Cell delivery systems: Toward the next generation of cell therapies for type 1 diabetes. J Cell Mol Med. Sep 2022;26(18):4756-4767. doi:10.1111/jcmm.17499
46. Rojas-Canales D, Walters SN, Penko D, et al. Intracutaneous Transplantation of Islets Within a Biodegradable Temporizing Matrix as an Alternative Site for Islet Transplantation. Diabetes. Jun 1 2023;72(6):758-768. doi:10.2337/db21-0841
47. Coronel MM, Stabler CL. Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol. Oct 2013;24(5):900-8. doi:10.1016/j.copbio.2013.05.004
48. Montgomery RA, Tatapudi VS, Leffell MS, Zachary AA. HLA in transplantation. Nat Rev Nephrol. Sep 2018;14(9):558-570. doi:10.1038/s41581-018-0039-x