Clinical Correlate of Dysphonia Measures in Patients with Parkinson’s Disease

Main Article Content

Monica Giuliano María Ines Debas Humberto Torres Silvia Pérez Leticia De Leon Dario Adamec Alan Berduc

Abstract

In patients with Parkinson's disease (PD), the impairment of neurological control is frequently observed to affect the normal functioning of the muscles involved in speech production. In this study we propose to analyze a speech corpus from subjects with and without PD, with the aim of quantifying speech alterations. The data corpus was built in 2019 in collaboration with public hospitals and universities of Argentina, it contains 55 audio samples from patients with PD and 71 subjects without PD. The analysis was conducted from four perspectives: a) perceptual speech therapy evaluation of voice quality; b) estimation of acoustic disturbance through the integrated perturbance index; c) otorhinolaryngological clinical evaluation to identify structural and functional alterations; and d) acoustic analysis of the sustained phonation signal of the vowel /a/. In the latter, 339 measures of dysphonia were estimated, which were then reduced to 11 parameters using statistical feature selection methods. These parameters achieved a performance greater than 80% in the automatic binary classification task (PD or non-PD). In the otorhinolaryngological clinical evaluation analysis, the clinical findings were classified into four categories based on the presence or absence of the alteration: gastroesophageal reflux; tremor during phonation and rest; alterations in glottic closure; and other alterations.


We estimated the degree of correlation between the analyses from these four perspectives. The integrated perturbance index is more relevant than the perceptual analysis of the voice quality, however, no correlation is observed with the clinical evaluation. Nonparametric statistical tests were used to assess mean differences between the 11 measures of dysphonia and each of the four categories of clinical findings identified. Significant differences were observed for four of the 11 selected dysphonia measures. These results encourage us to continue our analysis of acoustic parameters. We are also beginning to build a new data corpus, in which other measures of interest will be added.

Article Details

How to Cite
GIULIANO, Monica et al. Clinical Correlate of Dysphonia Measures in Patients with Parkinson’s Disease. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4827>. Date accessed: 22 dec. 2024. doi: https://doi.org/10.18103/mra.v11i12.4827.
Section
Research Articles

References

1. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30(12):1591–601. Available at http://dx.doi.org/10.1002/mds.26424
2. De Letter M, Santens P, Van Borsel J. The effects of levodopa on word intelligibility in Parkinson’s disease. J Commun Disord. 2005;38(3):187–96. Available at: http://dx.doi.org/10.1016/j.jcomdis.2004.09.001
3. Törnqvist AL, Schalén L, Rehncrona S. Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson’s disease treated with subthalamic deep brain stimulation: DBS Electrical Settings and Speech in PD. Mov Disord. 2005;20(4):416–23. Available at http://dx.doi.org/10.1002/mds.20348
4. Karabayir I, Goldman SM, Pappu S, Akbilgic O. Gradient boosting for Parkinson’s disease diagnosis from voice recordings. BMC Med Inform Decis Mak. 2020;20(1):228. Available at http://dx.doi.org/10.1186/s12911-020-01250-7
5. Yang S, Wang F, Yang L, Xu F, Luo M, Chen X, et al. The physical significance of acoustic parameters and its clinical significance of dysarthria in Parkinson’s disease. Sci Rep. 2020;10(1). Available at: http://dx.doi.org/10.1038/s41598-020-68754-0
6. Suppa A, Costantini G, Asci F, Di Leo P, Al-Wardat MS, Di Lazzaro G, et al. Voice in Parkinson’s disease: A machine learning study. Front Neurol. 2022;13. Available at http://dx.doi.org/10.3389/fneur.2022.831428
7. Chiaramonte R, Bonfiglio M. Análisis acústico de la voz en la enfermedad de Parkinson: revisión sistemática de la discapacidad vocal y metaanálisis de estudios. Rev Neurol. 2020;70(11):393–405. Available at: http://dx.doi.org/10.33588/rn.7011.2019414
8. Jiménez-Jiménez FJ, Gamboa J, Nieto A, Guerrero J, Orti-Pareja M, Molina JA, et al. Acoustic voice analysis in untreated patients with Parkinson’s disease. Parkinsonism Relat Disord. 1997;3(2):111–6. Available at: http://dx.doi.org/10.1016/s1353-8020(97)00007-2
9. Jiang J, Lin E, Wang J, Hanson DG. Glottographic measures before and after levodopa treatment in Parkinson’s disease. Laryngoscope. 1999;109(8):1287–94. Available at: http://dx.doi.org/10.1097/00005537-199908000-00019
10. Gallena S, Smith PJ, Zeffiro T, Ludlow CL. Effects of levodopa on laryngeal muscle activity for voice onset and offset in Parkinson disease. J Speech Lang Hear Res. 2001;44(6):1284–99. Available at http://dx.doi.org/10.1044/1092-4388(2001/100)
11. Giuliano M, Fernandez L, Perez S. Selección de Medidas de Disfonía para la Identificación de Enfermos de Parkinson [Not available in English]. In Proceedings IEEE ARGENCON2020. 2020, pp. 1-8, doi : 10.1109/ARGENCON49523.2020.9505554
12. Tsanas A. Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning. [PhD thesis]. Oxford University, UK.; 2012.
13. Tsanas A, Little MA, Fox C, Ramig LO. Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):181–90. Available at http://dx.doi.org/10.1109/TNSRE.2013.2293575
14. Guatelli R, Giuliano M, Aubin V, Fernández L, Pérez S, Pepe L. Análisis comparativo entre CNN y Modelos Logísticos para detección de la Enfermedad de Parkinson utilizando la voz. In Proceedings X Congreso Nacional de Ingeniería Informática / Sistemas de Información. AJEA Ed. 2022;299-305. Available at: https://doi.org/10.33414/ajea.1146.2022
15. Giuliano M, Fernández L, Pérez S, Renato A. Evaluación de áreas del espacio vocal y formantes para caracterizar personas con y sin Enfermedad de Parkinson. In Proceedings IEEE ARGENCON2021. 917–24. Available at http://dx.doi.org/10.1109/ARGENCON55245.2022.9939816
16. Giuliano M, Adamec D, Debas MI. Construcción de una base de voz de personas con y sin enfermedad de Parkinson. Rev Dig Departamento de Ingeniería e Investigaciones Tecnológicas (REDDI). 2021;6-10. Available at https://reddi.unlam.edu.ar/index.php/ReDDi/article/view/141
17. Gurlekian JA, Colantoni L, Torres HM. El alfabeto fonético SAMPA y el diseño de córpora fonéticamente balanceados. Fonoaudiológica Editorial: ASALFA. 2001;3–58.
18. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations the Movement Disorder Society Task Force on rating scales for Parkinson’s disease. Movement disorders. 2004;19:1020–8.
19. Fahn S, Elton R. Members of the UPDRS Development Committee. En: Fahn S, Marsden CD, Calne DB, Goldstein M, editores. Recent developments in Parkinson’s disease. Florham Park, NJ: Macmillan Health Care Information. 1987; 293–304.
20. Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. 1967. Neurology. 1998;50(2):318-335. Available at http://dx.doi.org/10.1212/wnl.50.2.318
21. Gurlekian JA, Torres HM, Cediel MR. A perceptual method to rate dysphonic voices. J Voice. 2019;33(4):453–64. Available at http://dx.doi.org/10.1016/j.jvoice.2018.01.007
22. Gurlekian JA, Molina N. Índice de perturbación, de precisión vocal y de grado de aprovechamiento de energía para la evaluación del riesgo vocal. Rev Logop Foniatr Audiol. 2012;32(4):156–63. Available at http://dx.doi.org/10.1016/j.rlfa.2012.03.007
23. Sigal L, Gurlekian JA. Aplicación de los índices de perturbación integrado y de precisión articulatoria en pacientes con disfonía espasmódica. Rev Investig Logop. 2014;4(2):132–50. Available at http://dx.doi.org/10.5209/rlog.58665
24. Debas MI, Morales C. Base de habla de pacientes con EP: Características de las cuerdas vocales observadas. In Memoria del primer workshop de estudios del habla en pacientes con enfermedad de Parkinson. 2023;86–94. Available at: https://www.uno.edu.ar/eduno/publicaciones.html
25. Pérez SN, Giuliano M. Audios_vowel_A_PD. Figshare; 2022. Available at http://dx.doi.org/10.6084/M9.FIGSHARE.21453867.V1
26. Mamolar A, Santamarina Rabanal ML, Granda Membiela CM, Fernández Gutiérrez, MJ, Sirgo Rodríguez P, Álvarez Marcos C. Swallowing Disorders in Parkinson’s Disease. Acta Otorrinolaringológica Española. 2017;68(1).
27. Wen P, Zhang Y, Wen G. Intelligent personalized diagnosis modeling in advanced medical systems for Parkinson’s disease using voice signals. Mathematical Biosciences and Engineering. 2023;20(5):8085–102.
28. Moro-Velazquez L, Gomez-Garcia JA, Arias-Londoño JD, Dehak N, Godino-Llorente JI. Advances in Parkinson’s Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomed Signal Process Control. 2021;66 (102418):102418. Available at: http://dx.doi.org/10.1016/j.bspc.2021.102418
29. Chiaramonte R, Bonfiglio M. Análisis acústico de la voz en la enfermedad de Parkinson: revisión sistemática de la discapacidad vocal y metaanálisis de estudios. Rev Neurol. 2020 Jun; 70: 393-405. Available from https://doi.org/10.33588/rn.7011.2019414
30. Gamboa J, Jiménez-Jiménez FJ, Nieto A, Cobeta I, Vegas A, Ortí-Pareja M, et al. Acoustic voice analysis in patients with essential tremor. J Voice. 1998; 12: 444-52.
31. Bauer V, Aleric Z, Jancic E, Miholovic V. Voice quality in Parkinson’s disease in the Croatian language speakers. Coll Antropol. 2011; 35 (Suppl 2): S209-12.
32. Midi I, Dogan M, Koseoglu M, Can G, Sehitoglu MA, Gunal DI. Voice abnormalities and their relation with motor dysfunction in Parkinson’s disease. Acta Neurol Scand. 2008; 117: 26-34.
33. Santos García D, Deux TD, Tejera Pérez C, Expósito Ruiz I, Suárez Castro E, Carpintero P, Macías Arribi M. Gastroparesia y otros síntomas gastrointestinales en la enfermedad de Parkinson. Rev neurol. 2015;61:261-270.
34. Hirano M. Clinical examination of voice. New York: Springer Verlag; 1981.
35. Giuliano M, Pérez SN, Berduc A. Memoria del primer workshop de estudios del habla en pacientes con enfermedad de Parkinson. EDUNO. 2023. Available at: https://www.uno.edu.ar/eduno/publicaciones.html
36. Giuliano M, Pérez SN, Mangiarua N. Estudio del habla de pacientes con enfermedad de Parkinson y desarrollo de aplicación web. In Actas XXIV WICC 2022 – Workshop de Investigadores en Ciencias de la Computación. FUSMA Ed. 2023 [accessed October 30, 2023]. Available at https://wicc2022.uch.edu.ar/