Pitch and Tone: Primacy of sound sources in auditory perception

Main Article Content

Akpan Jimmy Essien

Abstract

The brain performs diverse and complex operations effortlessly. Its sensitivity to minute stimulus changes, and precision in scaling sensory magnitudes, are yet to be understood by scientists. Nevertheless, its vast vault is accessible through well-established psycho-physical principles for dealing with sensory, mental, and all intangible phenomena. However, hearing research is experiencing the scarcity of law-abiding scientists because the current generation of information-processing psychologists cannot discipline itself to abide by the laws that govern hearing research. Modern investigators hope to resolve all problems in auditory perception through random and effortless computations of endless varieties of meaningless variables without the concept of invariance. Consequently, pitch and tone in music or speech are still shrouded in mystery after 2,500 years of intensive inquiry. The failure augurs the existence of fundamental scientific errors. This paper describes a search for the origin of pitch which plays lexical and intonational roles in Yoruba, a tone language. The approach which is based on the ecological conception of sound, will furnish experimental evidence from speech surrogates (drums) and strings, guided by the concept of invariance. The investigations are designed to demonstrate that the brain does not perform any computations at all in pitch and tone perception. The results show that the brain measures a unique mechanical parameter of sound sources to which all physical and mechanical transformations lead. In every pitch/tone perception context, therefore, the brain discards all other factors which convey other attributes of sound outside pitch and tone. The finding accounts for constancy in auditory code perception despite overwhelming variability at the production and acoustic levels. The experimental data accord primacy to the sound source as the origin of auditory codes. Implications for future research at the mechanical, acoustic, and neurophysiological levels of investigations into pitch/tone and auditory analysis as a whole are discussed.

Keywords: Pitch and Tone, Primacy of sound sources, auditory perception

Article Details

How to Cite
ESSIEN, Akpan Jimmy. Pitch and Tone: Primacy of sound sources in auditory perception. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4828>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i12.4828.
Section
Research Articles

References

1. Carterette, E. C. Some historical notes on research in hearing, in Carterette, E. C., Friedman, M. P. (eds.) Handbook of Perception. New York: Academic Press: 1978.

2. Stephen, R. W. B., Bates, A. E. Wave Motion and Sound, London: Edward Arnold & Co: 1950.

3. Ohm, G. S. Ueber die Definition des Tones, nebst daran geknupfter Theorie der Sirene und ahnlicher tonbildenden Vorrichtungen. Poggendors Annalen der Physik und Chemie: 1843;59:513–565.

4. Helmholtz, H. L .F. On the Sensations of Tone as a Physiological Basis for the Theory of Music, Translated from the German Version of 1877 and Revised by Ellis, A.J. 1954), New York: Dover Publications: 1877.

5. de Cheveigné, A. Pitch Perception Models, in Plack, C. J., Oxenham, A. J., Fay, R. R. (eds.) Pitch: Neural Coding and Perception. Springer Handbook of Auditory Research. London: Springer: 2005:169-233.

6. Winter, I. M. The neurophysiology of pitch, in Plack, C. J., Oxenham, A. J. (eds.) Pitch: Neural Coding and Perception, Springer Handbook of Auditory Research. New York, Springer: 2005.99-146.

7. Moore, B. C. J. Aspects of auditory processing related to speech perception, in Hardcastle, W. J., Laver, J., Gibbon, F. E. (eds.) The Handbook of Phonetic Sciences, Sussex: Wiley-Blackwell: 2010:454-488.

8. Békésy, G. von. The missing fundamental and periodicity detection in hearing. Journal of the Acoustical Society of America. 1972;51:631-637.

9. Plack, C. J., Oxenham, A. J., Fay, R. R. (eds.) Pitch: Neural Coding and Perception. Handbook of Auditory Research. London: Springer: 2005.

10. Perkell, J. S., Klatt, D. H. (eds.) Invariance and Variability in Speech Processes, New Jersey: Lawrence Erlbaum Associates: 1986.

11. Essien, A.J. Invariance: Its Nature and Role in Auditory Psychophysics. In Essien, A. J. (author) Sound Sources, Michael Terence Publishing: London: 2019:35-68.

12. Stevens, S. Mathematics, Measurement, and Psychophysics, in Stevens, S. S. (ed.) Handbook of Experimental Psychology. London: John Wiley & Sons: 1960:1-49

13. Bell, E. T. The Development of Mathematics. London: MacGraw-Hill: 1945.

14. Gibson, J. J. The Ecological Approach to Visual Perception. Boston. MA: Houghton-Mifflin: 1979.

15. Boring, E. G. The stimulus error. The American Journal of Psychology: 1921; 32:449-471.

16. Essien, A. J. Pitch in quantitative psychology. In Essien, A. J. (author) Sound Sources, Michael Terence Publishing: London: 2019:99-141.

17. Fechner, G. Elements of Psychophysics Vol. l. Translated from the German by Adler, H.E. (l966), London: Holt, Rinehart and Winston: 1860.

18. Cariani, P., Micheyl, C. Toward a Theory of Information Processing in Auditory Cortex, in Poeppel, D., Overath, J., Popper, A. N., Fay, R. R. (eds.) The Human Auditory Cortex. Springer Handbook of Auditory Research, London: Dordrecht: 2012:351-390

19. Stevens, S. S., Davis, H. Hearing: Its Psychology and Physiology, London: John Wiley & Sons: 1938.

20. Wilson, C. E. Noise Control (Revised Edition). Malabar, Florida: Krieger Publishing Company. 2006

21. Berg, R. E., Stork, D. G. The Physics of Sound. New Jersey: Prentice Hall: 1982.

22. Akrill, T. B., Miller, C. J. Mechanics, Vibrations and Waves, London: J. Murray. 1974.

23. Öhman, S. E. G. What is it we perceive when we perceive speech? in Cohen, A. and Nooteboom, S. G. (eds.) Structure and Process in Speech Perception, Berlin: Springer-Verlag. 1975:36-47.

24. Essien, A. J. Ecological Conception of Sound. In Essien, A.J. (author) Sound Sources: The Origin of Auditory Sensations. Michael Terence Publishing. London: 2019:191-221.

25. Essien, A.J. Sound Sources: The Origin of Auditory Sensations. Michael Terence Publishing. London: 2019.

26. Essien, A. J. The Perception of Yoruba Tone: Experimental Evidence from Drums, Speech Signals and Synthesis (In French). Unpublished Ph.D. thesis. Institute of Phonetics, Sorbonne University, Paris III. France: 2000.

27. Essien, A. J Pitch, tone, and intonation: The co-existence of tone and intonation in a tone language, Yoruba. Work in Progress: 2023

28. Akpabot, S. Standard drum patterns in Nigeria. African Music: 1971;5(1):37-39.

29. Newton, I. Philosophiæ Naturalis Principia Mathematica, (Mathematical Principles of Natural Philosophy), Vols. 1 and 2 Translated into English by Andrew Motte (1729). Revised and supplied with a historical and explanatory appendix by Florian Cajori. New York: Greenwood Press: 1687.

30. Radocy, R. E. Some unanswered questions in musical perception, Contributions to Music Education: 1978;(6):73-81.

31. Essien, A. J. The mechanical invariance factor in musical acoustics and perception (revisited). American Journal of Modern Physics, 2018:(7):1-13.

32. Békésy, G. von. Hearing theories and complex sounds. Journal of the Acoustical Society of America: 1963;(35):588-601.

33. Metzger, W. Consciousness, perception and action, In Carterette, E. C. and Friedman, M. P. (eds.) Handbook of Perception, New York: Academic Press: 1974;(1):109-122

34. Neisser, U. Cognition and Reality, San Francisco: Freeman. 1976.

35. Diehl, R. L. Coproduction and direct perception of phonetic segments: A critique, Journal of Phonetics: 1986;(14):61-66.

36. Port, R. F. Invariance in phonetics, in Perkell, J. S. and Klatt, D. H. (eds.) Invariance and Variability in Speech Processes,. New Jersey: Lawrence Erlbaum Associates: 1986:540-558

37. Householder, F. W. Jnr Review: Visible Speech by Potter, R.K., Kopp, G.A., Green, H.C. (1947): Word: 1948;(4):53-57.

38. Bregman, A. S. Auditory Scene Analysis: The Perceptual Organization of Sound, Cambridge, Massachusetts: The M.I.T. Press: 1990

39. Fischer-Jørgensen, E. What can the new techniques of acoustic phonetics contribute to linguistics? in Saporta, S. (ed.) Psycholinguistics: A Book of Readings, New York: Holt, Rinehart and Winston: 1961:112-142.

40. Mol, H. Fundamental of Phonetics. The Hague: Mouton & Co.: 1963.

41. Mol, H. Fundamental of Phonetics, Part ll. The Hague. Mouton & Co: 1970.

42. Fant, G. Speech Sounds and Features, Cambridge, Massachusetts: The M.I.T. Press: 1973.

43. Boomsliter, P. C., Creel, W. Research potentials in auditory characteristics of violin tone. Journal of the Acoustical Society of America: 1972;(51):1984-1993.

44. Fletcher, H. Speech and Hearing, London: Macmillan: 1929.

45. Plomp, R. Pitch of complex tones, Journal of the Acoustical Society of America: 1967;(41):1526-1533.

46. Patterson, R. D., Wightman, F. L. Residue pitch as a function of component spacing, Journal of the Acoustical Society of America: 1976;(59):1450-1459.

47. Terhardt, E., Stoll, G., Seewann, M. Pitch of complex signals according to virtual-pitch theory: Tests, examples, and predictions, Journal of the Acoustical Society of America: 1982;(71):671-678.

48. Houstma, A. J. M. and Smurzynski, J. Pitch identification and discrimination for complex tones with many harmonics, Journal of the Acoustical Society of America: 1990;(117):1326-1336.

49. Terhardt, E. Information-bearing elements of complex sounds, Journal of the Acoustical Society of America: 1992;(91):2357.

50. Hartman, W. M., Doty, S. L. On the pitches of the components of a complex tone, Journal of the Acoustical Society of America: 1996;(99):567-578.

51. Watkins, A. J., Dyson, M. C. On the perception organization of tone sequence and melodies, in Howell, P., Cross, I. and West, R. (eds.) Musical Structure and Perception, New York, Academic Press: 1985:71-119.

52. Cutting, J. E. Two ecological perspectives: Gibson vs. Shaw and Turvey, The Am. J. Psychology: 1982;95(2):199-222

53. Nooteboom, S. G. Chairmans opening speech: Seminar on the Perception of Temporal and Intonational Patterns of Speech, in Fant, G. and Tatham, W.A.A. (eds.) Auditory Analysis and Perception of Speech, New York: Academic Press: 1975

54. Bloothooft, G., Hazan, V., Huber, D. and Llisterri, J. Introduction, in Bloothooft, G., Hazan, V., Huber, D. and Llisterri, J. (eds.) European Studies in Phonetics and Speech Communication: Utrecht: OTS Publications: 1995:xiii-xv.

55. Hirsh, I. J., Watson, C. S. Auditory psychophysics and perception, Annual Reviews of Psychology: 1996;(47):461-484.

56. Small, A. M. Periodicity pitch, in Tobias, J. V. (ed.) Foundations of Modern Auditory Theory. 1970;(1):3-54.

57. Mace, W. M. James J. Gibson’s Ecological Approach: Perceiving What Exists, Ethics and the Environment: 2005;10(2):195-216.

58. Fowler, C. A. Sound-producing sources as objects of perception: Rate normalization and nonspeech perception, Journal of the Acoustical Society of America: 1990;(88): 1236-1249.

59. Repp, B. H. Categorical perception: Issues, methods and findings, Haskins Laboratories Status Report on Speech Research, 1982;(70):99-183.

60. Neuhoff, J. G. Preface, in Neuhoff, J. G. (ed.) Ecological Psycho-acoustics. London: Elsevier: 2004.

61. Van Valkenburg, D. and Kubovy, M. From Gibsons fire to Gestalts: A bridge-building theory of perceptual objecthood, in Neuhoff, J. G. (ed.) Ecological Psychoacoustics, London: Elsevier: 2004:113-147

62. Whalen, D. H. Three lines of evidence for direct links between production and perception in speech, Proceedings l4th International Congress of Phonetic Sciences: San Francisco: 1999:1257-1260.

63. Fowler, C. A., Hodges, B. Finding common ground: Alternatives to code models for language use, New Ideas in Psychology. 2016.doi.org/10.1016/j.newideapsych.

64. Yost, W. A. Perceiving sounds in the real world: An introduction to human complex sound perception, Frontiers in Bioscience, 2007;(12):3461-3467

65. Obata, J. and Tesima, T. Experimental studies on the sound and vibration of drum, Journal of the Acoustical Society of America., 1935;(6):267-274.

66. Lewis, D. & Cowan, M. The influence of intensity on the pitch of violin and "cello" tones, Journal of the Acoustical Society of America: 1936;(8):20-22.

67. Titze, I. R. Vocal fold mass is not a useful quantity for describing fo in vocalization, Journal of Speech, Language, and Hearing Research, 2011;(54):520-522.

68. Gaver, W. W. How do we hear in the world? Exploration in ecological acoustics, Ecological Psychology: 1993;(5):285-313.

69. McNeil, L. E., Mitran, S. Vibrational frequencies and tuning of the African mbira, Journal of the Acoustical Society of America: 2008;(123):1169-1168.

70. Maeda, S. Links between speech production and acoustics: A sketch, Proceedings 12th Inter. Cong of Phonetic Sciences, Aix-En-Provence, France: 1991;(1): 200-205.

71. Jakobson, R. and Waugh, L. The Sound Shape of Language, Brighton: Harvester Press: 1979.

72. Kent, R. D. The iceberg hypothesis: the temporal assembly of speech movements, in Perkell, J. S. and Klatt, D. H. (eds.) Invariance and Variability in Speech Processes, New Jersey: Lawrence Erlbaum Associates: 1986:234-242.

73. Blumstein, S. E. On acoustic invariance in speech, in Perkell, J. S., Klatt, D. H. (eds.) Invariance and Variability in Speech Processes, New Jersey: Lawrence Erlbaum Associates: 1986:178-201.

74. Lutfi, R. A. Human sound source identification, in Yost, W. A., Popper, A. N. and Fay, R. R. (eds.) Auditory Perception of Sound Sources. Springer Handbook of Auditory Research, New York: Springer: 2008; (29):13-42.

75. Neuhoff, J. G. Ecological Psychoacoustics: Introduction and History, in Neuhoff, J. G. (ed.) Ecological Psychoacoustics, London: Elsevier: 2004:1-13.

76. Essien, A.J. Mechanics of spectral change. In Essien, A. J. (author) Sound Sources,. Michael Terence Publishing. London: 2019:385-446

77. Essien, A. J. The force/tension dichotomy. In Essien, A.J. (author) Sound Sources, Michael Terence Publishing. London: 2019:337-361.

78. Gillam, E. Materials under Test. London: Newnes-Butterworths: 1969.

79. Higgins, R. A. Materials for Engineers and Technicians (5th Edition), Amsterdam: Newnes-Elsevier: 2010.

80. Cross, R., Lindsey, C. and Andruczy, D. Laboratory testing of tennis strings, Journal of Sports Engineering: 2000;(3):219-230.

81. Cross, R. and Bower, R. Measurements of string tension in a tennis racket, J. Sports Engineering: 2001:4(3):165-175.

82. Sauveur, J. Principes dAcoustique et de Musique, ou Système Général des Intervalles des Sons, et de son Application a tous les Instruments de Musique (Paris). Reprinted l973, Geneva: Minkoff, 1701.

83. Lindsay, R. B. The story of acoustics, Journal of the Acoustical Society of America: 1966;(39)629-644.

84. Dowling, W. J., Harwood, D. L. Music Cognition. London: Academic Press: 1986.

85. Plack, C. J., Oxenham, A. J. Overview: The present and future of pitch, in Plack, C. J. and Oxenham, A. J. (eds.) Pitch: Neural Coding and Perception. Handbook of Auditory Research, New York: Springer, 2005:1-6.

86. Carlson, R., Granström, B. Speech Synthesis, in Hardcastle, W. J., Laver, J. (eds.) The Handbook of Phonetic Sciences, Oxford: Blackwell Publishers: 1997:768-788.

87. Perkell, J. S., Klatt, D. H. (eds.) Invariance and Variability in Speech Processes, New Jersey: Lawrence Erlbaum Associates: 1986.

88. Stevens, S. S., Volkman, J. The relationship of pitch to frequency: A revised scale, The American Journal of Psychology: 1940;(53):329-353.

89. Siegle, R. J. A replication of the mel scale of pitch, American Journal of Psychology: 1965;(78):615-620.

90. Read, J. C. A. The place of human psychophysics in modern neuroscience. Neuroscience, 2015;(296):116-129.