The Clinical Significance of Cardiac Markers in COVID-19 Patients: A Review Article
Main Article Content
Abstract
SARS-CoV-2 is a highly contagious viral illness that started the COVID-19 pandemic in March 2020. Accumulating evidence suggests that the cardiovascular system is primarily affected by SARS-CoV-2. Cardiovascular complications such as myocarditis, acute coronary syndrome, heart failure, arrhythmias, and venous thromboembolism have been reported. The role of cardiac biomarkers in diagnosing and monitoring COVID-19 patients is becoming of particular interest, as it may provide insights into the underlying mechanisms of cardiovascular injury and inform clinical decision-making.
Troponins, specifically troponin I, have been widely studied and was proven to be elevated in COVID-19 patients with myocardial injury, indicating a negative prognostic indicator and association with poorer outcomes. Elevated levels of Natriuretic peptides, such as B-type natriuretic peptide (BNP), have been noted in severe COVID-19 cases and are associated with higher mortality rates. However, it is essential to consider that elevated natriuretic peptide levels in COVID-19 patients may also be influenced by factors other than heart failure. CK-MB, a subtype of creatine kinase, has been found to have significantly higher concentrations in COVID-19 patients with high disease severity or non-survivor status, suggesting its potential as a biomarker for risk stratification in this population. Myoglobin and lactate dehydrogenase (LDH) are additional cardiac markers that can indicate heart muscle damage, but their specificity in COVID-19 patients may be limited.
The widely used cardiac markers provide valuable diagnostic and prognostic information about cardiac injury and function in COVID-19 patients. Still, their performance characteristics and interpretation should be considered in the context of the individual patient and conjunction with other clinical assessments.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
https://www.ncbi.nlm.nih.gov/books/NBK554776/
2. Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID-19. JCI Insight. 2021;6(13). doi:10.1172/JCI. INSIGHT.148980
3. Lalani K, Seshadri S, Samanth J, et al. Cardiovascular complications and predictors of mortality in hospitalized patients with COVID-19: a cross-sectional study from the Indian subcontinent. Trop Med Health. 2022;50(1):1-11. doi:10.1186/S41182-022-00 449-W/TABLES/6
4. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. doi:10.1001/JAMA.2020.2648
5. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals | CDC. Accessed April 10, 2023. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html
6. Matsushita K, Ding N, Kou M, et al. The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis. Glob Heart. 2020;15(1):64. doi:10. 5334/GH.814
7. Gao Y dong, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021;76(2):428-455. doi:10.1111/ALL.14657
8. Siripanthong B, Asatryan B, Hanff TC, et al. The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. JACC Basic to Transl Sci. 2022;7(3):294-308. doi:10.1016/J.JACBTS.2021.10.011
9. Petersen SE, Friedrich MG, Leiner T, et al. Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC Cardiovasc Imaging. 2022;15(4):685. doi:10.1016/J. JCMG.2021.08.021
10. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265. doi:10.1001/JAMACARDIO.2020.3557
11. OV B, EA K, YA L, et al. Subacute and chronic post-covid myoendocarditis: clinical presentation, role of coronavirus persistence and autoimmune mechanisms. Kardiologiia. 2021;61(6):11-27. doi:10.18087/CARDIO.2021.6.N1659
12. Knight JS, Caricchio R, Casanova JL, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24). doi:10.1172/JCI154886
13. Nasif WA, El-Moursy Ali AS, Hasan Mukhtar M, et al. Elucidating the Correlation of D-Dimer Levels with COVID-19 Severity: A Scoping Review. Anemia. 2022;2022. doi:10.1155/2022/9104209
14. Cabrera-Garcia D, Miltiades A, Yim P, et al. Plasma biomarkers associated with survival and thrombosis in hospitalized COVID-19 patients. Int J Hematol. 2022;116(6):937-946. doi:10.1007/S12185-022-03437-2/FIGURES/4
15. Kaufmann CC, Ahmed A, Burger AL, et al. Biomarkers Associated with Cardiovascular Disease in COVID-19. Cells. 2022;11(6). doi:10.3390/CELLS11060922
16. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Card Fail. 2020;26(6):470. doi:10.1016/J. CARDFAIL.2020.04.009
17. Stefanini GG, Chiarito M, Ferrante G, et al. Early detection of elevated cardiac biomarkers to optimise risk stratification in patients with COVID-19. Heart. 2020; 106(19):1512-1518. doi:10.1136/HEARTJNL-2020-317322
18. García de Guadiana-Romualdo L, Morell-García D, Rodríguez-Fraga O, et al. Cardiac troponin and COVID‐19 severity: Results from BIOCOVID study. Eur J Clin Invest. 2021;51(6). doi:10.1111/ECI.13532
19. Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene. 2015;571 (2):153-166. doi:10.1016/J.GENE.2015.07.074
20. Thupakula S, Nimmala SSR, Ravula H, Chekuri S, Padiya R. Emerging biomarkers for the detection of cardiovascular diseases. Egypt Hear J Off Bull Egypt Soc Cardiol. 2022;74(1). doi:10.1186/S43044-022-00317-2
21. Piccioni A, Brigida M, Loria V, et al. Role of troponin in COVID-19 pandemic: a review of literature. Eur Rev Med Pharmacol Sci. 2020;24(19):10293-10300. doi:10.26355/EURREV_202010_23254
22. De Michieli L, Ola O, Knott JD, et al. High-Sensitivity Cardiac Troponin T for the Detection of Myocardial Injury and Risk Stratification in COVID-19. Clin Chem. 2021; 67(8):1080-1089. doi:10.1093/CLINCHEM/HVAB062
23. Elevated cardiac troponin I as a predictor of outcomes in COVID-19 hospitalizations: a meta-analysis - PubMed. Accessed April 26, 2023. https://pubmed-ncbi-nlm-nih-gov.eresources.mssm.edu/33257623/
24. Losiniecki FJ, Lopez J, Jazaerly M, et al. Negative Troponin I as a Predictor of Survival in Patients With Coronavirus Disease 2019. Int J Cardiol Hear Vasc. 2023;45:101196. doi:10. 1016/J.IJCHA.2023.101196
25. De Michieli L, Jaffe AS, Sandoval Y. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Heart Fail Clin. 2023; 19(2):163-176. doi:10.1016/J.HFC.2022.08.005
26. Artico J, Shiwani H, Moon JC, et al. Myocardial Involvement After Hospitalization for COVID-19 Complicated by Troponin Elevation: A Prospective, Multicenter, Observational Study. Circulation. 2023;147(5): 364. doi:10.1161/CIRCULATIONAHA.122.060632
27. Umeh CA, Ranchithan S, Watanabe K, Tuscher L, Gupta R. Elevated Troponin and Mortality in Patients with COVID-19: A Multicenter Retrospective Cohort Study. Open Cardiovasc Med J. 2022;16(1). doi:10. 2174/18741924-V16-E2207210
28. Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci. 2022;23(22). doi:10. 3390/IJMS232214415
29. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond). 2016;130(2):57-77. doi:10.1042/CS20150469
30. Theetha Kariyanna P, Sabih A, Sutarjono B, et al. A Systematic Review of COVID-19 and Pericarditis. Cureus. 2022;14(8). doi:10.7759/ CUREUS.27948
31. Soumagne T, Winiszewski H, Besch G, et al. Pulmonary embolism among critically ill patients with ARDS due to COVID-19. Respir Med Res. 2020;78:100789. doi:10.1016/J. RESMER.2020.100789
32. Benhuri B, Aikawa T, Takagi H, Benhuri D, Kuno T. Elevated Natriuretic Peptides in Patients With Severe or Critical COVID-19: A Meta-Analysis. Texas Hear Inst J. 2022;49(5). doi:10.14503/THIJ-20-7404
33. Dalia T, Lahan S, Ranka S, et al. Impact of congestive heart failure and role of cardiac biomarkers in COVID-19 patients: A systematic review and meta-analysis. Indian Heart J. 2021;73(1):91-98. doi:10.1016/J.IHJ. 2020.12.002
34. Robinson DJ, Christenson RH. Creatine kinase and its CK-MB isoenzyme: the conventional marker for the diagnosis of acute myocardial infarction. J Emerg Med. 1999;17(1):95-104. doi:10.1016/S0736-4679 (98)00129-2
35. Zinellu A, Sotgia S, Fois AG, Mangoni AA. Serum CK-MB, COVID-19 severity and mortality: An updated systematic review and meta-analysis with meta-regression. Adv Med Sci. 2021;66(2):304-314. doi:10.1016/J.ADVMS.2021.07.001
36. Diagnostic strategies in myocardial infarction using myoglobin measurement - PubMed. Accessed April 26, 2023. https://pubmed-ncbi-nlm-nih-gov.eresources.mssm.edu/9857933/
37. Ergenc I, Capar E, Sengel BE, et al. Diagnostic performance of lactate dehydrogenase (LDH) isoenzymes levels for the severity of COVID-19. J Med Biochem. 2023;42(1):16. doi:10.5937/JOMB0-37234
38. Yong SJ, Halim A, Halim M, et al. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev Med Virol. 2023;33(2). doi:10.1002/RMV.2424