The Clinical Significance of Cardiac Markers in COVID-19 Patients: A Review Article

Main Article Content

Mohammed Shaban Franklin Sosa Jose Lopez Gustavo J. Duarte Justin D. Mark Asma Khizar Swati Jain Rishabh Mishra Miguel Rodriguez Guerra Timothy J Vittorio

Abstract

SARS-CoV-2 is a highly contagious viral illness that started the COVID-19 pandemic in March 2020. Accumulating evidence suggests that the cardiovascular system is primarily affected by SARS-CoV-2. Cardiovascular complications such as myocarditis, acute coronary syndrome, heart failure, arrhythmias, and venous thromboembolism have been reported. The role of cardiac biomarkers in diagnosing and monitoring COVID-19 patients is becoming of particular interest, as it may provide insights into the underlying mechanisms of cardiovascular injury and inform clinical decision-making.


 


Troponins, specifically troponin I, have been widely studied and was proven to be elevated in COVID-19 patients with myocardial injury, indicating a negative prognostic indicator and association with poorer outcomes. Elevated levels of Natriuretic peptides, such as B-type natriuretic peptide (BNP), have been noted in severe COVID-19 cases and are associated with higher mortality rates. However, it is essential to consider that elevated natriuretic peptide levels in COVID-19 patients may also be influenced by factors other than heart failure. CK-MB, a subtype of creatine kinase, has been found to have significantly higher concentrations in COVID-19 patients with high disease severity or non-survivor status, suggesting its potential as a biomarker for risk stratification in this population. Myoglobin and lactate dehydrogenase (LDH) are additional cardiac markers that can indicate heart muscle damage, but their specificity in COVID-19 patients may be limited.


 


The widely used cardiac markers provide valuable diagnostic and prognostic information about cardiac injury and function in COVID-19 patients. Still, their performance characteristics and interpretation should be considered in the context of the individual patient and conjunction with other clinical assessments.

Keywords: SARS-CoV-2, myocarditis, acute coronary syndrome, heart failure, arrhythmias, troponin, B-type natriuretic peptide (BNP)

Article Details

How to Cite
SHABAN, Mohammed et al. The Clinical Significance of Cardiac Markers in COVID-19 Patients: A Review Article. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4853>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i12.4853.
Section
Review Articles

References

1. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. Published online January 9, 2023. Accessed April 10, 2023.
https://www.ncbi.nlm.nih.gov/books/NBK554776/

2. Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID-19. JCI Insight. 2021;6(13). doi:10.1172/JCI. INSIGHT.148980

3. Lalani K, Seshadri S, Samanth J, et al. Cardiovascular complications and predictors of mortality in hospitalized patients with COVID-19: a cross-sectional study from the Indian subcontinent. Trop Med Health. 2022;50(1):1-11. doi:10.1186/S41182-022-00 449-W/TABLES/6

4. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. doi:10.1001/JAMA.2020.2648

5. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals | CDC. Accessed April 10, 2023. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html

6. Matsushita K, Ding N, Kou M, et al. The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis. Glob Heart. 2020;15(1):64. doi:10. 5334/GH.814

7. Gao Y dong, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021;76(2):428-455. doi:10.1111/ALL.14657

8. Siripanthong B, Asatryan B, Hanff TC, et al. The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. JACC Basic to Transl Sci. 2022;7(3):294-308. doi:10.1016/J.JACBTS.2021.10.011

9. Petersen SE, Friedrich MG, Leiner T, et al. Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC Cardiovasc Imaging. 2022;15(4):685. doi:10.1016/J. JCMG.2021.08.021

10. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265. doi:10.1001/JAMACARDIO.2020.3557

11. OV B, EA K, YA L, et al. Subacute and chronic post-covid myoendocarditis: clinical presentation, role of coronavirus persistence and autoimmune mechanisms. Kardiologiia. 2021;61(6):11-27. doi:10.18087/CARDIO.2021.6.N1659

12. Knight JS, Caricchio R, Casanova JL, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24). doi:10.1172/JCI154886

13. Nasif WA, El-Moursy Ali AS, Hasan Mukhtar M, et al. Elucidating the Correlation of D-Dimer Levels with COVID-19 Severity: A Scoping Review. Anemia. 2022;2022. doi:10.1155/2022/9104209

14. Cabrera-Garcia D, Miltiades A, Yim P, et al. Plasma biomarkers associated with survival and thrombosis in hospitalized COVID-19 patients. Int J Hematol. 2022;116(6):937-946. doi:10.1007/S12185-022-03437-2/FIGURES/4

15. Kaufmann CC, Ahmed A, Burger AL, et al. Biomarkers Associated with Cardiovascular Disease in COVID-19. Cells. 2022;11(6). doi:10.3390/CELLS11060922

16. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Card Fail. 2020;26(6):470. doi:10.1016/J. CARDFAIL.2020.04.009

17. Stefanini GG, Chiarito M, Ferrante G, et al. Early detection of elevated cardiac biomarkers to optimise risk stratification in patients with COVID-19. Heart. 2020; 106(19):1512-1518. doi:10.1136/HEARTJNL-2020-317322

18. García de Guadiana-Romualdo L, Morell-García D, Rodríguez-Fraga O, et al. Cardiac troponin and COVID‐19 severity: Results from BIOCOVID study. Eur J Clin Invest. 2021;51(6). doi:10.1111/ECI.13532

19. Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene. 2015;571 (2):153-166. doi:10.1016/J.GENE.2015.07.074

20. Thupakula S, Nimmala SSR, Ravula H, Chekuri S, Padiya R. Emerging biomarkers for the detection of cardiovascular diseases. Egypt Hear J Off Bull Egypt Soc Cardiol. 2022;74(1). doi:10.1186/S43044-022-00317-2

21. Piccioni A, Brigida M, Loria V, et al. Role of troponin in COVID-19 pandemic: a review of literature. Eur Rev Med Pharmacol Sci. 2020;24(19):10293-10300. doi:10.26355/EURREV_202010_23254

22. De Michieli L, Ola O, Knott JD, et al. High-Sensitivity Cardiac Troponin T for the Detection of Myocardial Injury and Risk Stratification in COVID-19. Clin Chem. 2021; 67(8):1080-1089. doi:10.1093/CLINCHEM/HVAB062

23. Elevated cardiac troponin I as a predictor of outcomes in COVID-19 hospitalizations: a meta-analysis - PubMed. Accessed April 26, 2023. https://pubmed-ncbi-nlm-nih-gov.eresources.mssm.edu/33257623/

24. Losiniecki FJ, Lopez J, Jazaerly M, et al. Negative Troponin I as a Predictor of Survival in Patients With Coronavirus Disease 2019. Int J Cardiol Hear Vasc. 2023;45:101196. doi:10. 1016/J.IJCHA.2023.101196

25. De Michieli L, Jaffe AS, Sandoval Y. Use and Prognostic Implications of Cardiac Troponin in COVID-19. Heart Fail Clin. 2023; 19(2):163-176. doi:10.1016/J.HFC.2022.08.005

26. Artico J, Shiwani H, Moon JC, et al. Myocardial Involvement After Hospitalization for COVID-19 Complicated by Troponin Elevation: A Prospective, Multicenter, Observational Study. Circulation. 2023;147(5): 364. doi:10.1161/CIRCULATIONAHA.122.060632

27. Umeh CA, Ranchithan S, Watanabe K, Tuscher L, Gupta R. Elevated Troponin and Mortality in Patients with COVID-19: A Multicenter Retrospective Cohort Study. Open Cardiovasc Med J. 2022;16(1). doi:10. 2174/18741924-V16-E2207210

28. Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci. 2022;23(22). doi:10. 3390/IJMS232214415

29. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond). 2016;130(2):57-77. doi:10.1042/CS20150469

30. Theetha Kariyanna P, Sabih A, Sutarjono B, et al. A Systematic Review of COVID-19 and Pericarditis. Cureus. 2022;14(8). doi:10.7759/ CUREUS.27948

31. Soumagne T, Winiszewski H, Besch G, et al. Pulmonary embolism among critically ill patients with ARDS due to COVID-19. Respir Med Res. 2020;78:100789. doi:10.1016/J. RESMER.2020.100789

32. Benhuri B, Aikawa T, Takagi H, Benhuri D, Kuno T. Elevated Natriuretic Peptides in Patients With Severe or Critical COVID-19: A Meta-Analysis. Texas Hear Inst J. 2022;49(5). doi:10.14503/THIJ-20-7404

33. Dalia T, Lahan S, Ranka S, et al. Impact of congestive heart failure and role of cardiac biomarkers in COVID-19 patients: A systematic review and meta-analysis. Indian Heart J. 2021;73(1):91-98. doi:10.1016/J.IHJ. 2020.12.002

34. Robinson DJ, Christenson RH. Creatine kinase and its CK-MB isoenzyme: the conventional marker for the diagnosis of acute myocardial infarction. J Emerg Med. 1999;17(1):95-104. doi:10.1016/S0736-4679 (98)00129-2

35. Zinellu A, Sotgia S, Fois AG, Mangoni AA. Serum CK-MB, COVID-19 severity and mortality: An updated systematic review and meta-analysis with meta-regression. Adv Med Sci. 2021;66(2):304-314. doi:10.1016/J.ADVMS.2021.07.001

36. Diagnostic strategies in myocardial infarction using myoglobin measurement - PubMed. Accessed April 26, 2023. https://pubmed-ncbi-nlm-nih-gov.eresources.mssm.edu/9857933/

37. Ergenc I, Capar E, Sengel BE, et al. Diagnostic performance of lactate dehydrogenase (LDH) isoenzymes levels for the severity of COVID-19. J Med Biochem. 2023;42(1):16. doi:10.5937/JOMB0-37234

38. Yong SJ, Halim A, Halim M, et al. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev Med Virol. 2023;33(2). doi:10.1002/RMV.2424