Acute Kidney Injury: Current and Future Therapies Involving Antioxidants and Antioxidant Formulations

Main Article Content

Kauther I. Layas Prabal K. Chatterjee Ananth S. Pannala

Abstract

Acute kidney injury is characterised by abrupt failure of kidney function, sometimes leading to chronic kidney disease, and is associated with significant morbidity and mortality. However, there is no clear effective therapeutic solution and treatment is mainly based on either alleviation or removal of the possible cause and/or renal replacement therapy. Oxidative stress has been indicated as one of the main pathophysiological pathways in the development of acute kidney injury. Various treatments including antioxidants, inflammatory mediators and genetic modifiers have been proposed to for the treatment of this condition. Epidemiological studies show lower incidence of kidney failure with higher consumption of antioxidants. However, the data is inconclusive due to their physicochemical properties, bioavailability or toxicity. Novel drug delivery systems such as liposomes and nanoparticles have been proposed to overcome the pharmacodynamic and pharmacokinetic barriers. This review provides a brief introduction to acute kidney injury and the different factors involved in its pathology, focusing on oxidative stress. It also covers details of antioxidant use as preventive and/or treatment option. It will summarise their limitations as free drugs and the possible improvement in their bioavailability by two main novel drug delivery systems: liposomes and polymeric nanoparticles. Other therapies such as inflammatory mediators and genetic modifiers are also discussed briefly.

Keywords: Acute kidney injury, antioxidants, ascorbic acid, curcumin, flavonoids, liposomes, nanoparticles, oxidant injury, oxidative stress, resveratrol, α-tocopherol

Article Details

How to Cite
LAYAS, Kauther I.; CHATTERJEE, Prabal K.; PANNALA, Ananth S.. Acute Kidney Injury: Current and Future Therapies Involving Antioxidants and Antioxidant Formulations. Medical Research Archives, [S.l.], v. 11, n. 11, nov. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4863>. Date accessed: 16 may 2024. doi: https://doi.org/10.18103/mra.v11i11.4863.
Section
Research Articles

References

1. Kellum, JA, Ronco, C, Vincent, J-L. Controversies in Acute Kidney Injury. Contrib Nephrol. 2011;174. https://doi.org/10.1159/isbn.978-3-8055-9811-8
2. Bellomo, R, Kellum, JA, Ronco, C. Acute kidney injury. Lancet. 2012; 380 (9843): 756-766. https://doi.org/10.1016/S0140-6736(11)61454-2
3. Rangaswamy, D, Sud, K. Acute kidney injury and disease: Long-term consequences and management. Nephrology.2018; 23: 969–980. https://doi.org/10.1111/nep.13408
4. Mayer, B. Encyclopaedia of nephrology and acute kidney injury. Foster Academics; 2015. ISBN 978-1-63242-166-1.
5. Basile, DP, Donohoe, DL, Roethe, K, Mattson, DL. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Renal Physiol. 2003; 284(2): 338-348. https://doi.org/10.1152/ajprenal.00169.2002
6. Wald, R, Quinn, RR, Luo, J, Li, P, Scales, DC, Mamdani, MM, Ray, JG. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009; 302(11): 1179-85. https://doi.org/10.1001/jama.2009.1322
7. Coca, SG, Singanamala, S, Parikh, CR. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int.2012; 81(5): 442-448. https://doi.org/10.1038/ki.2011.379
8. Chertow, GM, Burdick, E, Honour, M, Bonventre, JV, Bates, DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005;16(11): 3365-3370. https://doi.org/10.1681/ASN.2004090740
9. O’Callaghan, C. The Renal system at a glance. Fourth edition. John Wiley & Sons; 2017. ISBN: 978-1-118-39387-1.
10. Field, M, Pollock, C, Harris, D. The renal system. Second edition. Elsevier; 2007. ISBN: 978-0-7020-3371-1.
11. Seely, R, Van Putte, C, Regan, J, Russo, A. Seely’s Anatomy and Physiology, Ninth edition. McGraw-Hill; 2010. ISBN: 978-0-07-352561-7.
12. Hoenig, MP, Zeidel, ML. (2014) Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clin J Am Soc Nephrol. 2014; 9(7): 1272-1281. https://doi.org/10.2215/CJN.08860813
13. Mendoza, JD. Acute Kidney Injury: causes, diagnosis, and treatments. Nova Science Publishers; 2011. ISBN 987-1-61209-790-9.
14. Mehta, RL, Kellum, JA, Shah, SV, Molitoris, BA, Ronco, C, Warnock, DG, Levin, A. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care. 2007; 11(2): R31. https://doi.org/10.1186/cc5713
15. Waikar, SS, Bonventre, JV. Creatinine kinetics and the definition of acute kidney injury. J. Am. Soc. Nephrol. 2008; 20(3). 672-679. https://doi.org/10.1681/ASN.2008070669
16. Hoste, EAJ, Clermont, G, Kersten, A, Venkataraman, R, Angus, DC, Bacquer, DD, Kellum, JA. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit. Care. 2006; 10(3): R73. https://dx.doi.org/10.1186%2Fcc4915
17. Lopes, JA, Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: A critical and comprehensive review. Clin. Kidney J. 2013; 6(1): 8–14. https://doi.org/10.1093/ckj/sfs160
18. Rahman, M, Shad, F, Michael, C. Acute kidney injury: A guide to diagnosis and management. Am Fam Physician. 2012; 86(7): 631-639.
19. Prowle, JP, Echeverri, JE, Ligabo, V, Ronco, C, Bellomo, R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010; 6(2): 107-115. https://doi.org/10.1038/nrneph.2009.213
20. Thaker, CV. Perioperative acute kidney injury. Adv Kidney Dis Health. 2013; 20(1): 67-75. https://doi.org/10.1053/j.ackd.2012.10.003
21. Mehta, RL, Cerda, J, Burdmann, EA, Tonelli, M, García-García G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MK, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G. International society of nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. The lancet commissions. 2015; 385(9987): 2616-2643. https://doi.org/10.1016/S0140-6736(15)60126-X
22. Thaker, CV, Chrisianson, A, Freyberg, R, Almenoff, P, Render, ML. Incidence and outcomes of acute kidney injury in intensive care units: A Veterans Administration study. 2009; Crit. Care Med. 37(9):2552. https://doi.org/10.1097/CCM.0b013e3181a5906f
23. Ronco, C, Bellomo, R, Kellum, JA. Acute kidney injury. Contributions to Nephrology. Vol. 156. Karger Publishers; 2007. ISBN: 978-3-8055-8271-1
24. Chen, H, Busse, LW. Novel therapies for acute kidney injury. Kidney Int Rep. 2017; 2(5): 785-799. https://dx.doi.org/10.1016%2Fj.ekir.2017.06.020
25. Yang J, Lu C, Yan L, Tang X, Li W, Yang Y, Hu D. The association between atherosclerotic renal artery stenosis and acute kidney injury in patients undergoing cardiac surgery. PLoS One. 2013; 8(5): e64104. https://doi.org/10.1371/journal.pone.0064104
26. Finlay, S, Jones, MC. Acute Kidney Injury. Acute Med. II. 2017; 45(3): 173-176. https://doi.org/10.1016/j.mpmed.2016.12.010
27. Agarwal, A, Sharma, R, Gupta, S, Harlev, A, Ahmad, G, du Plessis, SS, Esteves, SC, Wang, SM, Durairajanayagam, D. Oxidative stress in human reproduction. Springer; 2017. Date accessed 9/12/2018. https://doi.org/10.1007/978-3-319-48427-3_1
28. Halliwell, B, Gutteridge, J. Free radicals in biology and medicine. Oxford University Press; 2015. Date accessed 12/12/2018. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
29. Ray, PD, Haung, BW, Tisuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cell Signal. 2012; 24(5): 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
30. Chandrasekaran, A, Idelchik, MDPS, Melendez, JA. Redox control of senescence and age-related disease. Redox Biol. 2016; 11: 91-102. https://doi.org/10.1016/j.redox.2016.11.005
31. Newsholme, P, Cruzat, VF, Keane, KN, Carlessi, R, de Bittencourt, PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016; 4(24): 4527-4550. https://doi.org/10.1042/BCJ20160503C
32. Vakifahmetoglu-Norberg, H, Ouchida, AT, Norberg, E. The Role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun . 2016; 482(3): 426-431. https://doi.org/10.1016/j.bbrc.2016.11.088
33. Preedy, V. Aging: Oxidative stress and dietary antioxidants. Academic Press. Elsevier; 2014. ISBN 978-0-12-405933-7.
34. Cadenas, E, Davies, KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000; 29(3-4): 222–230. https://doi.org/10.1016/s0891-5849(00)00317-8
35. Brand, M. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signalling. Free Radic Biol Med. 2016; 100: 14-31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001
36. Gelpi R., Boveris A., Poderoso J. Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease. Springer, Cham; 2016. Date accessed 13/4/2020. https://doi.org/10.1007/978-3-319-45865-6_5.
37. Bartesaghi, S, Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018; 14: 618-625. https://doi.org/10.1016/j.redox.2017.09.009
38. Berlett, B, Stadtman, E. Protein oxidation in aging, disease, and oxidative stress. J. of Biol Chem. 1997; 272(33): 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
39. Spickett, CM, Forman, HJ. Lipid Oxidation in Health and Disease. CRC Press, Taylor & Francis Group; 2015. ISBN: 978-1-4822-0285-4.
40. Radi, R, Beckman, JS, Bush, KM, Freeman, BA. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys .1991; 288(2): 481-487. https://doi.org/10.1016/0003-9861(91)90224-7
41. Pannala, AS, Rice-Evans, CA, Halliwell, B, Singh, S. Inhibition of peroxynitrite- mediated tyrosine nitration by catechin polyphenols. Biochem. Biophys. Res. Commun. 1997; 232(1): 164-168. https://doi.org/10.1006/bbrc.1997.6254
42. Pannala, AS, Razaq, R, Halliwell, B, Singh, S, Rice-Evans, CA. Inhibition of peroxynitrite- mediated tyrosine nitration by hydroxycinnamates: Nitration or electron donation? Free Radic Biol Med. 1998; 24(4): 594-606. https://doi.org/10.1517/17425247.2014.919253
43. Pannala, AS, Rice-Evans, CA, Sampson, J, Singh, S. Interaction of peroxynitrite with carotenoids and tocopherols within low density lipoprotein. FEBS Lett. 1998; 432(3). 297-301. https://doi.org/10.1016/S0014-5793(98)00108-2
44. Drel, VR, Pacher, P, Stevens, MJ, Obrosova, IG. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. Free Rad. Biol. Med. 2006; 40: 1454–1465. https://doi.org/10.1016/j.freeradbiomed.2005.12.034
45. Trettin, A, Böhmer, A, Zoerner, A A, Gutzki, FM, Jordan, J, Tsikas, D. GC-MS/MS and LC-MS/MS studies on unlabelled and deuterium-labelled oleic acid (C18:1) reactions with peroxynitrite (O=N-O-O⁻) in buffer and hemolysate support the pM/nM-range of nitro-oleic acids in human plasma. J. Chromatogr. B Analyt Technol Biomed Life Sci. 2014; 964: 172–179. https://doi.org/10.1016/j.jchromb.2014.01.016
46. Kansanen, E. Lipid oxidation and nitration products as activators of cytoprotective Nrf2 signaling in the endothelium. Publications of the University of Eastern Finland Dissertations in Health Sciences; 2012. ISBN: 978-952-61-0644-1.
47. Zhang H-M, Dang H, Yeh C-K, Zhang B-X. Linoleic Acid-Induced Mitochondrial Ca2+ Efflux Causes Peroxynitrite Generation and Protein Nitrotyrosylation. PLoS ONE. 2009; 4(6): e6048. https://doi.org/10.1371/journal.pone.0006048
48. Baskin, S, Salem, H. Oxidants, antioxidants, and free radicals. 1st edition. CRC Press. Taylor and Francis Group; 1997.
49. Barzilai, A, Yamamato, K-I. DNA damage responses to oxidative stress. DNA Repair (Amst). 2004; 3 (8-9): 1109-1115. https://doi.org/10.1016/j.dnarep.2004.03.002
50. Valavanidis, A, Vlachogianni, T, Fiotakis, C. 8-hydroxy-2-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C. 2009; 27:120–139. https://doi.org/10.1080/10590500902885684
51. von Sonntag, C. Free Radical-Induced DNA Damage and Its Repair: A Chemical perspective. Springer Science & Business Media; 2006. ISBN: 978-3-540-30592-7.
52. Devalaraja-Narashimha, K, Singaravelu, K, Padanilam, BJ. Poly (ADP-ribose) polymerase-mediated cell injury in acute renal failure. Pharmacol Res.2005; 52(1): 44-59. https://doi.org/10.1016/j.phrs.2005.02.022
53. Chatterjee, Pk, Zacharowski, K, Cuzzocrea, S, Otto, M, Thiemermann, C. Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J. 2000; 14(5): 641-651. https://doi.org/10.1096/fasebj.14.5.641
54. Chatterjee, PK, Chatterjee, BE, Pedersen, H, Sivarajah, A, McDonald, CM, Mota-Filipe, H, Brown, PAJ, Stewart, KN, Cuzzocrea, S, Threadgill, MD, Thiemermann, C. 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int. 2004; 65(2): 499-509. https://doi.org/10.1111/j.1523-1755.2004.00415.x
55. Surh, Y-J. Oxidative Stress, Inflammation, and Health. CRC Press. Taylor & Francis Group; 2005 ISBN 978-0-8247-2733-8.
56. Sahu, BD, Mahesh Kumar, J, Sistla, R. (2015). Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defences and down-regulating the MAPKs and NF-κB pathways. PloS one. 2015; 10(7): e0134139. https://doi.org/10.1371/journal.pone.0134139
57. Basile, DP, Anderson, MD, Sutton, TA. Pathophysiology of acute kidney injury. Compr Physiol.2012; 2(2): 1303–1353. https://dx.doi.org/10.1002%2Fcphy.c110041
58. Ichikawa, I, Kiyama, S, Yoshioka, T. Renal antioxidant enzymes: their regulation and function. Kidney Int. 1994; 45(1): 1-9. https://doi.org/10.1038/ki.1994.1
59. Salmonowicz, B, Krzystek-Korpacka, M, Noczyńska, A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Adv Clin Exp Med. 2014; 23(2):259-68. https://doi.org/10.17219/acem/37074
60. Funk, J, Odejinmi, S, Schnellmann, R. SRT1720 Induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharmacol Exp Ther. 2010; 333(2): 593–601. https://doi.org/10.1124/jpet.109.161992
61. Nowak, G, Aleo, MD, Morgan, JA, Schnellmann, RG. Recovery of cellular functions following oxidant injury. Am J Physiol. 1998; 274(3): 509-515. https://doi.org/10.1152/ajprenal.1998.274.3.F509
62. Karlberg, L, Norlén, BJ, Ojteg, G, Wolgast, M. Impaired medullary circulation in postischemic acute renal failure. Acta Physiol. 1983; 198(1):11-17. https://doi.org/10.1111/j.1748-1716.1983.tb07234.x
63. Bonventre, JV, Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Investig. 2011; 121(11): 4210–4221. https://dx.doi.org/10.1172%2FJCI45161
64. Sutton, T. Alteration of microvascular permeability in acute kidney injury. Microvasc Res. 2009; 77(1): 4–7. https://dx.doi.org/10.1016%2Fj.mvr.2008.09.004
65. Pavlakou, P, Zhang, H, O'Connor, Z, Chertow, M, Crowley, T, Choudhury, D, Finkel, K, Kellum, A, Paganini, E, Schein, M, Smith, W, Swanson, M, Thompson, T, Vijayan, A, Watnick, S, Star, A, Peduzzi, P. Intensity of renal support in critically ill patients with acute renal injury. N Engl J Med. 2008; 359: 7-20. https://doi.org/10.1056/NEJMoa0802639
66. Tomsa, AM, Alexa, AL, Junie, ML, Rachisan, AL, Ciumarnean, L. Oxidative stress as a potential target in acute kidney injury. Peer J. 2019; 7: e8046. https://doi.org/10.7717/peerj.8046
67. Pavlakou, P, Liakopoulos, V, Elftheriadis, T, Mitsis, M, Dounousi, E. Oxidative stress and acute kidney injury in critical illness: Pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxid Med Cell Longev. 2017; 6193694. https://doi.org/10.1155/2017/6193694
68. Rodrigo, R. Oxidative stress and antioxidants: their role in human diseases. Nova Biomedical publishers, Inc; 2009. ISBN: 978-1-60741-554-1.
69. Lemasters, JJ, Nieminen, AL, Qian, T, Trost, LC, Elmore, SP, Nishimura, Y, Crowe, RA, Cascio ,WE, Bradham, CA, Brenner, DA, Herman, B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998; 1366(1–2):177-196. https://doi.org/10.1016/s0005-2728(98)00112-1
70. Kim, J-S, He, L, Lemasters, JJ. Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003; 304(3): 463-470. https://doi.org/10.1016/s0006-291x(03)00618-1
71. Kim, J-S, Jin, Y, Lemasters, JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006; 290(5): 2024-2034. https://doi.org/10.1152/ajpheart.00683.2005
72. Takeyama, N, Miki, S, Hirakawa, A, Tanaka, T. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Exp Cell Res. 2002; 274(1): 16-24. https://doi.org/10.1006/excr.2001.5447
73. Paller, MS, Hoidal, JR, Ferris, TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Investig. 1984; 74(4): 1156–1164. https://dx.doi.org/10.1172%2FJCI111524
74. Ishimoto, Y, Inagi, R. Mitochondria: A therapeutic target in acute kidney injury. Nephrol Dial Transplant. 2016; 31(7): 1062-1069. https://doi.org/10.1093/ndt/gfv317
75. González-Flecha, B, Boveris, A. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim Biophys Acta. 1995; 1243(3): 361-366. https://doi.org/10.1016/0304-4165(94)00160-y
76. Kruidering, M, Van de Water, B, de Heer, E, Mulder, GJ, Nagelkerke, JF. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther. 1997; 280(2): 638-49.
77. Baliga, R, Zhang, Z, Baliga, M, Ueda, N, Shah, V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Intern. 1998; 53(2): 394-401. https://doi.org/10.1046/j.1523-1755.1998.00767.x
78. Jiang, M, Wei, Q, Pabla, N, Dong, G, Wang, CY, Yang, T, Smith, SB, Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol. 2007; 73(9): 1499-510. https://doi.org/10.1016/j.bcp.2007.01.010
79. Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK. Kidney ischemia-reperfusion: modulation of antioxidant defences. Mol Cell Biochem. 2000; 205(1-2): 1-11. https://doi.org/10.1023/a:1007047505107
80. Leach, M, Frank, S, Olbrich, A, Pfeilschifter, J, Thiemermann, C Decline in the expression of copper/zinc superoxide dismutase in the kidney of rats with endotoxic shock: Effects of the superoxide anion radical scavenger, tempol, on organ injury. Br J Pharmacol. 1998; 125(4): 817–825. https://doi.org/10.1038/sj.bjp.0702123
81. Yamanobe, T, Okada, F, Iuchi, Y, Onuma, K, Tomita, Y, Fujii, J. Deterioration of ischemia/reperfusion-induced acute renal failure in SOD1-deficient mice. Free Radic Res. 2007; 41(2): 200-207. https://doi.org/10.1080/10715760601038791
82. Du, C, Guan, Q, Diao, H, Yin, Z, Jevnikar, AM. Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8. American Journal of Physiology. Renal Physiol. 2006; 290(5): 1044-1054. https://doi.org/10.1152/ajprenal.00341.2005
83. Du, C, Guan, Q, Yin Z, Zhong, R, Jevnikar, AM IL-2-mediated apoptosis of kidney tubular epithelial cells is regulated by the caspase-8 inhibitor c-FLIP. Kidney Int. 2005; 67(4): 1397-1409. https://doi.org/10.1111/j.1523-1755.2005.00217.x
84. Garcia-Criado, FJ, Eleno, N, Santos-Benito, F, Valdunciel, JJ, Reverte, M, Lozano-Sánchez, FS, Ludeña, MD, Gomez-Alonso, A, López-Novoa, JM. Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplant. 1998; 66(8): 982-990. https://doi.org/10.1097/00007890-199810270-00003
85. Hegarty, NJ, Young, LS, Kirwan, CN, O'Neill, AJ, Bouchier-Hayes, DM, Sweeney, P, Watson, RW, Fitzpatrick, JM. Nitric oxide in unilateral ureteral obstruction: effect on regional renal blood flow. Kidney Int. 2001; 59(3): 1059-1065. https://doi.org/10.1046/j.1523-1755.2001.0590031059.x
86. Noiri, E, Nakao, A, Uchida, K, Tsukahara, H, Ohno, M, Fujita, T, Brodsky, S, Goligorsky, MS. Oxidative and nitrosative stress in acute renal ischemia. American Journal of Physiology. Renal Physiol. 2001; 281(5): 948-957. https://doi.org/10.1152/ajprenal.2001.281.5.F948
87. Wang, W, Jittikanont, S, Falk, SA, Li, P, Feng, L, Gengaro, PE, Poole, BD, Bowler, RP, Day, BJ, Crapo, JD, Schrier, RW. Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol. Renal Physiol. 2003; 284(3): F532-537. https://doi.org/10.1152/ajprenal.00323.2002
88. Wu, J, Pan, X, Fu, H, Zheng, Y, Dai, Y, Yin, Y, Chen, Q, Hao, Q, Bao, D, Hou, D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep. 2017; 7: 10114.
89. Kyung Jo, S, Rosner, M, Okuso, M. pharmacologic treatment of acute kidney injury: why drugs haven't worked and what is on the horizon. Clin J Am Society Nephrol. 2007; 2: 356-365. https://doi.org/10.2215/CJN.03280906
90. Wan, L, Langenberg, C, Bellomo, R, May, CN. Angiotensin II in experimental hyperdynamic sepsis. Crit Care. 2009; 13(6): R190. https://doi.org/10.1186/cc8185
91. Okusa, MD, Linden, J, Macdonald, T, Huang, L. Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am J Physiol. 1999; 277(3): 404–412. https://doi.org/10.1152/ajprenal.1999.277.3.F404
92. Palipoch, S. A Review of oxidative stress in acute kidney injury: Protective role of medicinal plants-derived antioxidants. Afr J Tradit Complement Altern Med. 2013; 10(4): 88–93. https://doi.org/10.4314/ajtcam.v10i4.15
93. Miyake, Y, Shimoi, K, Kumazawa, S, Yamamoto, K, Kinae, N, Osawa, T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J Agric Food Chem. 2000; 48(8): 3217–3224. https://doi.org/10.1021/jf990994g
94. Dennis, JM, Witting, PK. Protective role for antioxidants in acute kidney disease. Nutrients. 2017; 9(7): 718. https://dx.doi.org/10.3390%2Fnu9070718
95. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int. 2000; 58(2): 658-673. https://doi.org/10.1046/j.1523-1755.2000.00212.x
96. Meydani, M. Vitamin E and atherosclerosis: Beyond prevention of LDL oxidation. J Nutrition. 2001; 131(2): 366S-368S. https://doi.org/10.1093/jn/131.2.366S
97. Roob, JM, Khoschssorur, G, Tiran, A, Horina, JH, Holzer, H, Winklhofer-Roob, BM. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol. 2000; 11(3): 539–549.
98. Cho, MH, Kim, SN, Park, HW, Chung, S, Kim, KS. Could Vitamin E Prevent Contrast-Induced Acute Kidney Injury? A Systematic Review and Meta-Analysis. J Korean Med Sci. 2017. 32(9): 1468–1473. https://doi.org/10.3346/jkms.2017.32.9.1468
99. Liu, P, Feng, Y, Wang, Y, Zhou, Y, Zhao, L. Protective effect of vitamin E against acute kidney injury. Biomed Mater Eng. 2015; 26(1) S2133–S2144. https://doi.org/10.3233/BME-151519
100. Fan, S, Zhang, Z, Zheng, Y, Lu, J, Wu, D, Shan, Q, Hu, B, Wang, Y. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int Immunopharmacol. 2008; 9(1): 91-96. https://doi.org/10.1016/j.intimp.2008.10.008
101. Liu, C-M, Ma, J-Q, Lou, Y. Chronic administration of troxerutin protects mouse kidney against d-galactose-induced oxidative DNA damage. Food Chem Toxicol. 2010; 48(10): 2809-2817. https://doi.org/10.1016/j.fct.2010.07.011
102. Augusti, PR, Conterato, GMM, Somacal, S, Sobieski, R, Spohr, PR, Torres, JV, Charão, MF, Moro, AM, Rocha, MP, Garcia, SC, Emanuelli, T. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem Toxicol. 2008; 46(1): 212-219. https://doi.org/10.1016/j.fct.2007.08.001
103. Gao, D, Li, W. Research progress of astaxanthin on contrast agent induced acute kidney injury. J Cardiol Cardiovasc Med. 2018; 2(3): 6-9. https://doi.org/10.29245/2578-3025/2018/3.1123
104. Guo, S-X, Zhou, H-L, Huang, C-L, You, C-G, Fang, Q, Wu, P, Wang, X-G, Han, C-M. Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Mar Drugs. 2015; 13(4): 2105–2123. https://doi.org/10.3390/md13042105
105. Liu, N, Chen, J, Gao, D, Li, W, Zheng, D. Astaxanthin attenuates contrast agent-induced acute kidney injury in vitro and in vivo via the regulation of SIRT1/FOXO3a expression. Int J Nephrol Urol. 2018; 50(6): 1171–1180. https://doi.org/10.1007/s11255-018-1788-y
106. Safa, J, Argani, H, Bastani, B, Nezami, N, Ardebili, BR, Ghorbanihaghjo, A, Kalagheichi, H, Amirfirouzi, A, Mesgari, M, Rad, JS. Protective Effect of grape seed extract on gentamicin induced acute kidney injury. Iran J Kidney Dis. 2010; 4(4): 285-291.
107. Bagchi, D, Bagchi, M, Stohs, SJ, Das, DK, Ray, SD, Kuszynski, CA, Joshi, SS, Pruess, HG. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicol. 2000; 148(2-3): 187-197. https://doi.org/10.1016/s0300-483x(00)00210-9
108. Saad, AA, Youssef, MI, El-Shennaway, LK. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: The protective effect of grape seed proanthocyanidin extract. Food Chem Toxicol. 2009; 47(7): 1499-1506. https://doi.org/10.1016/j.fct.2009.03.043
109. Hasan, HA, Edrees, GM, El-Gamel, EM, El-Sayed, EA. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology. 2014; 66(3): 419–429. https://doi.org/10.1007/s10616-013-9589-8
110. Sayed, AAR. Proanthocyanidin protects against cisplatin‐induced nephrotoxicity. Phytother Res. 2009; 23(12): 1738-1741. https://doi.org/10.1002/ptr.2833
111. Ulusoy, S, Ozkan, G, Alkanat, M, Mungan, S, Yuluğ, E, Orem, A. Perspective on rhabdomyolysis-induced acute kidney injury and new treatment options. Am J Nephrol. 2013; 38(5): 368-378. https://doi.org/10.1159/000355537
112. Ulusoy, S, Ozkan, G, Yucesan, FB, Ersöz, S, Orem, A, Alkanat, M, Yuluğ, E, Kaynar, K, Al, S. Anti‐apoptotic and anti-oxidant effects of grape seed proanthocyanidin extract in preventing cyclosporine A‐induced nephropathy. Nephrol. 2012; 17(4): 372-379. https://doi.org/10.1111/j.1440-1797.2012.01565.x
113. Zhang, H, Sun, X-Q, Cao, J-M, Zhou, H-T, Guo, X, Wang, Y. Protective effect of epimedium combined with oligomeric proanthocyanidins on exercise-induced renal ischemia-reperfusion injury of rats. Int J Clin Exper Med. 2014; 7(12): 5730–5736. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4307546/
114. Ozkan, G, Ulusoy, S, Orem, A, Ersöz, S, Alkanat, M, Yucesan, FB, Kaynar, K, Al, S. Protective effect of the grape seed proanthocyanidin extract in a rat model of contrast-induced nephropathy. Kidney Blood Press Res. 2012; 35(6): 445–453. https://doi.org/10.1159/000337926
115. Li, G, Yin, L, Liu, T, Zheng, X, Xu, G, Xu, Y, Yuan, R, Che, J, Liu, H, Zhou, L, Chen, X, He, M, Li, Y, Wu, L, Liu, E. Role of probucol in preventing contrast-induced acute kidney injury after coronary interventional procedure. Am J Card. 2009; 103(4): 512-514. https://doi.org/10.1016/j.amjcard.2008.10.009
116. Wang, N, Wei, RB, Li, QP, Yang, X, Li, P, Huang, MJ, Wang, R, Cai, GY, Chen, XM. Renal protective effect of probucol in rats with contrast-induced nephropathy and its underlying mechanism. Med Sci Monit. 2015; 21: 2886–2892. https://dx.doi.org/10.12659%2FMSM.895543
117. Yin, L, Li, GP, Liu, T, Liu, M, Chen, X, He, M, Zheng, X-T, Liu, E-Z, Zhou, L-J. Role of probucol in preventing contrast induced acute kidney injury after coronary interventional procedure: a randomized trial. Zhonghua Xin Xue Guan Bing Za Zhi. 2009; 37(5):385-388.
118. Yin, L, Li, G, Liu, T, Yuan, R, Zheng, X, Xu, G, Xu, Y, Che, J, Liu, X, Ma, X, Li, F, Liu, E, Chen, X, Wu, L, Fan, Z, Ruan, Y, He, M, Li, Y. Probucol for the prevention of cystatin C-based contrast-induced acute kidney injury following primary or urgent angioplasty: A randomized, controlled trial. Int J Cardiol. 2013; 167 (2): 426-429. https://doi.org/10.1016/j.ijcard.2012.01.017
119. Abdel-Naim, AB, Abdel-Wahab, MH, Attia, FF. Protective effects of vitamin E probucol against gentamicin-induced nephrotoxicity in rats. Pharmacol Res. 1999; 40(2): 183-187. https://doi.org/10.1006/phrs.1999.0494
120. Kumar, K, Naidu, M, Shifow, A, Ratnakar, A. Probucol protects against gentamicin-induced nephrotoxicity in rats. Indian J Pharmacol. 2000; 32(2): 108-113.
121. Qin, X, Zhang, S, Zarkovic, M, Yamazaki, Y, Oda, H, Nakatsuru, Y, Ishikawa, T, Ishikawa, T. Inhibitory effect of probucol on nephrotoxicity induced by ferric nitrilotriacetate (Fe-NTA) in rats. Carcinog. 1995; 16(10): 2549–2552. https://doi.org/10.1093/carcin/16.10.2549
122. Modi, KS, Morrisey, J, Shah, SV, Schreiner, GF, Klahr, S. Effects of probucol on renal function in rats with bilateral ureteral obstruction. Kidney Int. 1990; 38(5): 835-850. https://doi.org/10.1038/ki.1990.280
123. Tasanarong, A, Kongkham, S, Itharat, A. Antioxidant effect of Phyllanthus emblica extract prevents contrast-induced acute kidney injury. BMC Complement Altern Med. 2014; 14: 138. https://doi.org/10.1186/1472-6882-14-138
124. Sadeghi, F, Nematbakhsh, M, Noori-Diziche, A, Eshraghi-Jazi, F, Talebi, A, Nasri, H, Mansouri, A, Dehghani, A, Saberi, S, Shirdavani, S, Ashrafi, F. Protective effect of pomegranate flower extract against gentamicin-induced renal toxicity in male rats. J Renal Inj Prev. 2015; 4(2): 45–50. https://dx.doi.org/10.12861%2Fjrip.2015.10
125. Ghaznavi, H, Fatemi, I, Kalantari, H, Tabatabaei, SMTH, Mehrabani, M, Gholamine, B, Kalantar, M, Mehrzadi, S, Goudarzi, M. Ameliorative effects of gallic acid on gentamicin-induced nephrotoxicity in rats. J Asian Nat Prod Res. 2017; 20(12): 1182-1193. https://doi.org/10.1080/10286020.2017.1384819
126. Olayinka, ET, Ore, A, Ola, AS, Adeyemo, OA. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats. Med Sci. 2015; 3(3): 78-92. https://dx.doi.org/10.3390%2Fmedsci3030078
127. Akomolafe, SF, Akinyemi, AJ, Anadosie, SO. Phenolic Acids (Gallic and Tannic Acids) modulate antioxidant status and cisplatin induced nephrotoxicity in rats. Int Sch Res Notices. 2014; 984709. https://doi.org/10.1155/2014/984709
128. Asci, H, Ozmen, O, Ellidag, HY, Aydin, B, Bas, E, Yilmaz, N. The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal. 2017; 25(4): 890-897. https://doi.org/10.1016/j.jfda.2017.05.001
129. Ajibade, TO, Oyagbemi, AA, Omobowale, TO, Asenuga, ER, Afolabi, JM, Adedapo, AA. Mitigation of diazinon-induced cardiovascular and renal dysfunction by gallic acid. Interdiscip Toxicol. 2016; 9(2): 66–77. https://dx.doi.org/10.1515%2Fintox-2016-0008
130. Padma, VV, Sowmya, P, Felix, TA, Baskaran, R, Poornima, P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem Toxicol. 2011; 49(4): 991-998. https://doi.org/10.1016/j.fct.2011.01.005
131. Ahmadvand, H, Yalameha, B, Adibhesami, G, Nasri, M, Naderi, N, Babaeenezhad, E, Nouryazdan, N. The Protective Role of Gallic Acid Pretreatment on Renal Ischemia-reperfusion Injury in Rats. Rep Biochem Molecul Biol. 2019; 8(1): 42–48. https://www.ncbi.nlm.nih.gov/pubmed/31334287
132. Nabavi, SM, Habtemariam, S, Nabavi, SF, Sureda, A, Daglia, M, Moghaddam, AH, Amani, MA. Protective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat’s kidney. Molecul Cell Biochem. 2013; 372(1-2): 233-239. https://doi.org/10.1007/s11010-012-1464-y
133. Sadat, U, Usman, A, Gillard, JH, Boyle, JR Does Ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography. A systematic review with meta-analysis of randomized, controlled trials. JACC. 2013; 62(23): 2167-2175. https://doi.org/10.1016/j.jacc.2013.07.065
134. Frei, B, England, L, Ames, B. Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America. 1989; 86(16): 6377-6381. https://dx.doi.org/10.1073%2Fpnas.86.16.6377
135. Hamdi, S, Selmi, W, Hraiech, A, Jomaa, W, Hamda KB, Maatouk, F CRT-66 Prevention of contrast induced nephropathy in patients undergoing coronarography with ascorbic acid. J Am Coll Card: Cardiovascul Interven. 2012; 6(2): 84. https://doi.org/10.1016/j.jcin.2012.12.084
136. Li, R, Chen, H. Prevention of contrast-induced nephropathy with ascorbic acid. Internal Med. 2012; 51(6): 531-535. https://doi.org/10.2169/internalmedicine.51.6260
137. Brueck, M, Cengiz, H, Hoeltgen, R, Wieczorek, M, Boedeker, R, Scheibelhut, C, Boening, A. Usefulness of N-acetylcysteine or ascorbic acid versus placebo to prevent contrast-induced acute kidney injury in patients undergoing elective cardiac catheterization: a single-center, prospective, randomized, double-blind, placebo-controlled trial. J Invasive Cardiol. 2013; 25(6): 276-228.
138. Rezaei, Y, Hemilä, H. Vitamins E and C may differ in their effect on contrast-induced acute kidney injury. Am J Kidney Dis. 2017; 69(5): 708–709. https://doi.org/10.1053/j.ajkd.2016.12.022
139. Khan, MR, Siddiqui, S, Parveen, K, Javed, S, Diwakar, S, Siddiqui, WA. Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K 2 Cr 2 O 7)-induced acute renal injury in rats. Chemico-Biologic Interact. 2010; 186(2): 228-238. https://doi.org/10.1016/j.cbi.2010.04.025
140. Tasanarong, A, Vohakiat, A, Hutayanon, P, Piyayotai, D. New strategy of α- and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrol Dial Transplant. 2013; 28(2): 337–344. https://doi.org/10.1093/ndt/gfs525
141. Kim, HB, Shanu, A, Wood, S, Parry, SN, Collet, M, McMahon, A, Witting, PK. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res. 2011; 45(9): 1000-1012. https://doi.org/10.3109/10715762.2011.590137
142. Rebholz, CM, Crews, DC, Grams, ME, Steffen, LM, Levey, AS, Miller, ER 3rd, Appel, LJ, Coresh, J. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am J Kidney Dis. 2016; 68(6): 853–861. https://doi.org/10.1053/j.ajkd.2016.05.019
143. Nasri, H, Ahmadi, A, Baradaran, A, Nasri, P, Hajian, S, Pour-Arian, A, Kohi, G, Rafieian-Kopaei, M. A biochemical study on ameliorative effect of green tea (Camellia sinensis) extract against contrast media induced acute kidney injury. J Renal Inj Preven. 2014; 3(2): 47–49. https://doi.org/10.12861/jrip.2014.16
144. Khan, SA, Priyamvada, S, Farooq, N, Khan, S, Khan, MW, Yusufi, AN. Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res. 2009; 59(4): 254–262. https://doi.org/10.1016/j.phrs.2008.12.009
145. Veljković, M, Pavlović, DR, Stojiljković, N, Ilić, S, Petrović, A, Jovanović, I, Radenković, M. Morphological and morphometric study of protective effect of green tea in gentamicin-induced nephrotoxicity in rats. Life Sci. 2016; 147: 85-91. https://doi.org/10.1016/j.lfs.2016.01.035
146. Rehman, H, Krishnasamy, Y, Haque, K, Thurman, RG, Lemasters, JJ, Schnellmann, RG, Zhong, Z. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLOS ONE. 2013; 8(6): 1–12. https://doi.org/10.1371/journal.pone.0065029
147. Ryu, HH, Kim, HL, Chung, JH, Lee, BR, Kim, TH, Shin, BC. Renoprotective effects of green tea extract on renin-angiotensin-aldosterone system in chronic cyclosporine-treated rats. Nephrol Dialysis Transplant. 2011; 26(4): 1188–1193. https://doi.org/10.1093/ndt/gfq616
148. Shin, BC, Kwon, YE, Chung, JH, Kim, HL. The antiproteinuric effects of green tea extract on acute cyclosporine-induced nephrotoxicity in rats. Transplant Proceedings. 2012; 44(4): 1080-1082. https://doi.org/10.1016/j.transproceed.2012.03.047
149. Funamoto, M, Masumoto, H, Takaori, K, Taki, T, Setozaki, S, Yamazaki, K, Minakata, K, Ikeda, T, Hyon, S-H, Sakata, R. Green tea polyphenol prevents diabetic rats from acute kidney injury after cardiopulmonary bypass. Ann Thorac Surg. 2015; 101(4): 1507-1513. https://doi.org/10.1016/j.athoracsur.2015.09.080
150. Rah, DK, Han, DW, Baek, HS, Hyon, SH, Park, BY, Park, JC. Protection of rabbit kidney from ischemia/reperfusion injury by green tea polyphenol pre-treatment. Arch Pharmaceut Res. 2007; 30(11): 1447-1454. https://doi.org/10.1007/bf02977370
151. Molinari, M, Watt, KD, Kruszyna, T, Nelson, R, Walsh, M, Huang, WY, Nashan, B, Peltekian, K. Acute liver failure induced by green tea extracts: Case report and review of the literature. Liver Transplant. 2006; 12(12): 1892-1895. https://doi.org/10.1002/lt.21021
152. Kaur, A, Kaur, T, Singh, B, Pathak, D, Buttar, HS, Singh, AP. Curcumin alleviates ischemia reperfusion-induced acute kidney injury through NMDA receptor antagonism in rats. Renal Failure. 2016; 38(9): 1462-1467. https://doi.org/10.1080/0886022X.2016.1214892
153. Boozari, M, Hosseinzadeh, H. Natural medicines for acute renal failure: A review. Phytother Res. 2017; 31(12): 1824-1835. https://doi.org/10.1002/ptr.5943
154. Venkat Ratnam, D, Ankola, DD, Bhardwaj, V, Sahana, DK, Ravi Kumar, MNV. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release. 2006; 113(3): 189-207. https://doi.org/10.1016/j.jconrel.2006.04.015
155. Pangeni, R, Sahni, JK, Ali, J, Sharma, S, Baboota, S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv. 2014; 11(8): 1285-1298. https://doi.org/10.1517/17425247.2014.919253
156. Soppimath, KS, Aminabhavi, TM, Kulkarni, AR, Rudzinski, WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001; 70(1–2):1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
157. Faraji, AH, Wipf, P. (2009). Nanoparticles in cellular drug delivery. Bioorganic & Medicinal Chemistry 17(8): 2950-2962. https://doi.org/10.1016/j.bmc.2009.02.043
158. Reis, CP, Neufeld, RJ, Ribeiro, AJ, Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. 2006; 2(1): 8-21. https://doi.org/10.1016/j.nano.2005.12.003
159. Parveen, S, Misra, R, Sahoo, SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. 2012; 8(2): 147-166. https://doi.org/10.1016/j.nano.2011.05.016
160. Rao, JP, Geckeler, KE. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011; 36(7): 887-913. https://doi.org/10.1016/j.progpolymsci.2011.01.001
161. da Silva, D, Kaduri, M, Poley, M, Adir, O, Krinsky, N, Shainsky-Roitman, J, Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Engin J. 2018; 340: 9-14. https://doi.org/10.1016/j.cej.2018.01.010
162. Buhecha, MD, Lansley, AB, Somavarapu, S, Pannala, AS. (2019) Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug. J Drug Delivery Sci Techn. 2019; 53: 101128. https://doi.org/10.1016/j.jddst.2019.101128
163. Rai, M, Kon, K. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. 1st Edition. Academic Press; 2015. ISBN 9780128013175.
164. Banerjee, R. Liposomes: Application in medicine. J Biomat App. 2001; 16(1): 3-21. https://doi.org/10.1106/RA7U-1V9C-RV7C-8QXL
165. Sercombe, L, Veerati, T, Moheimani, F, Wu, SY, Sood, AK, Hua, S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015; 6: 286. https://doi.org/10.3389/fphar.2015.00286
166. Bulbake, U, Doppalapudi, S, Kommineni, N, Khan, W. Liposomal formulations in clinical use: An updated review. Pharm. 2017; 9(2): 12. https://doi.org/10.3390/pharmaceutics9020012
167. Dichello, GA, Fukuda, T, Maekawa, T, Whitby, RLD, Mikhalovsky, SV, Alavijeh, M, Pannala, AS, Sarker, DK. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. European J Pharm Sci. 2017; 105: 55-63. https://doi.org/10.1016/j.ejps.2017.05.001
168. Galvão, AM, Wanderley, MS, Silva, RA, Filho, CA, Melo-Junior, MR, Silva, LA, Streck, EL, Dornelas de Andrade, AF, Souza Maia, MB, Barbosa de Castro, CM. Intratracheal co-administration of antioxidants and ceftriaxone reduces pulmonary injury and mortality rate in an experimental model of sepsis. Respirol. 2014; 19(7): 1080–1087. https://doi.org/10.1111/resp.12363
169. Alhusaini, A, Fadda, L, Hassan, I, Ali, HM, Alsaadan, N, Aldowsari, N, Aldosari, A, Alharbi, B. Liposomal Curcumin Attenuates the Incidence of Oxidative Stress, Inflammation, and DNA Damage Induced by Copper Sulfate in Rat Liver. Dose-Response. 2018; 16(3): 1559325818790869. https://doi.org/10.1177/1559325818790869
170. Csiszár, A, Csiszar, A, Pinto, JT, Gautam, T, Kleusch, C, Hoffmann, B, Tucsek, Z, Toth, P, Sonntag, WE, Ungvari, Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. The Journals of Gerontology. Series A, Biol Sci Med Sci. 2015; 70(3): 303–313. https://doi.org/10.1093/gerona/glu029
171. Bonechi, C, Martini, S, Ciani, L, Lamponi, S, Rebmann, H, Rossi, C, Ristori, S. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PloS One. 2012; 7(8): e41438. https://doi.org/10.1371/journal.pone.0041438
172. Fang, JY, Hwang, TL, Huang, YL, Fang, CL. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int J Pharm. 2006; 310(1-2): 131–138. https://doi.org/10.1016/j.ijpharm.2005.12.004
173. Qin, J, Chen, D, Lu, W, Xu, H, Yan, C, Hu, H, Chen, B, Qiao, M, Zhao, X. Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev Ind Pharm. 2008; 34(6): 602–608. https://doi.org/10.1080/03639040701833559
174. Schwedhelm, E, Maas, R, Troost, R, Bogar, R. Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. Clin Pharmacok. 2003; 42(5):437. https://doi.org/10.2165/00003088-200342050-00003
175. Ergin, B, Zuurbier, CJ, Bezemer, R, Kandil, A, Almac, E, Demirci, C, Ince, C. Ascorbic acid improves renal microcirculatory oxygenation in a rat model of renal I/R injury. J Transl Int Med. 2015; 3(3): 116–125. https://doi.org/10.1515/jtim-2015-0011
176. Dennis, JM, Witting, PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients. 2017; 9(7): 718. https://doi.org/10.3390/nu9070718
177. Wang, Y, Lin, H, Lin, BW, Lin, JD. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 2019; 9(1): 58. https://doi.org/10.1186/s13613-019-0532-9
178. Christen, S, Woodall, AA, Shigenaga, MK, Southwell-Keely, PT, Duncan, MW, Ames, BN. gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94(7): 3217–3222. https://doi.org/10.1073/pnas.94.7.3217
179. Soltani, R, Khorvash, F, Meidani, M, Badri, S, Alaei, S, Taheri, S. Vitamin E in the prevention of vancomycin-induced nephrotoxicity. Res Pharm Sci. 2020; 15(2): 137–143. https://doi.org/10.4103/1735-5362.283813
180. Tasanarong, A, Vohakiat, A, Hutayanon, P, Piyayotai, D. New strategy of α- and γ-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrol Dial Transpl. 2013; 28(2): 337–344. https://doi.org/10.1093/ndt/gfs525
181. Simon, LC, Stout, RW, Sabliov, C. Bioavailability of Orally Delivered Alpha-Tocopherol by Poly(Lactic-Co-Glycolic) Acid (PLGA) Nanoparticles and Chitosan Covered PLGA Nanoparticles in F344 Rats. Nanobiomedicine. 2016; 3: 8. https://doi.org/10.5772/63305
182. Holthoff, JH, Wang, Z, Seely, KA, Gokden, N, Mayeux, PR. Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 2012; 81(4): 370-378. https://doi.org/10.1038/ki.2011.347
183. Rotches-Ribalta, M, Andres-Lacueva, C, Estruch, R, Escribano, E, Urpi-Sarda. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol Res. 2012; 66(5): 375-382. https://doi.org/10.1016/j.phrs.2012.08.001
184. Walle, T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011; 1215: 9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x
185. Wenzel, E, Somoza, V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005; 49(5): 472-481. https://doi.org/10.1002/mnfr.200500010
186. Crowell, JA, Korytko, PJ, Morrissey, RL, Booth, TD, Levine, BS. Resveratrol-associated renal toxicity. Toxicol Sci. 2004; 82(2): 614-619. https://doi.org/10.1093/toxsci/kfh263
187. Narayanan, NK, Nargi, D, Randolph, C, Naryanan, BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer. 2009; 125(1): 1-8. https://doi.org/10.1002/ijc.24336
188. Pandita, D, Kumar, S, Poonia, N, Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int. 2014; 62: 1165-1174. https://doi.org/10.1016/j.foodres.2014.05.059
189. Chauhan, AS. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci. 2015; 1384(1): 134-140. https://doi.org/10.1111/nyas.12816
190. Pentek, T, Newenhouse, E, O’Brien, BO, Chauhan, AS. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules. 2017; 22(1): 137. https://dx.doi.org/10.3390%2Fmolecules22010137
191. Xu, Y, Zhang, B, Xie, D, Hu, Y, Li, H-L, Zhong, L-L, Wang, H-W, Jiang, W, Ke, Z-P, Zheng, D-H. Nanoparticle-mediated dual delivery of resveratrol and DAP5 ameliorates kidney ischemia/reperfusion injury by inhibiting cell apoptosis and inflammation. Oncotarget. 2017; 8(24): 39547–39558. https://doi.org/10.18632/oncotarget.17135
192. Xu, S, Gao, Y, Zhang, Q, Wei, S, Chen, Z, Dia, X, Zeng, Z, Zhao, K-S. SIRT1/3 Activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxi Med Cell Longev. 2016; 7296092. https://doi.org/10.1155/2016/7296092
193. Gan, Y, Tao, S, Cao, D, Xie, H, Zeng, Q. Protection of resveratrol on acute kidney injury in septic rats. Hum Exp Toxicol. 2017; 36(10): 1015-1022. https://doi.org/10.1177/0960327116678298
194. Chen, L, Yang, S, Zumbrun, EE, Guan, H, Nagarkatti, PS, Nagarkatti, M. Resveratrol attenuates lipopolysaccharide‐induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 2015; 59(5): 853-864. https://doi.org/10.1002/mnfr.201400819
195. Wang, N, Mao, L, Yang, L, Zou, J, Liu, K, Liu, M, Zhang, H, Xiao, X, Wang, K. Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway. Oncotarget. 2017; 8(22): 36449–36461. https://doi.org/10.18632/oncotarget.16860
196. Hao, Q, Xiao, X, Zheng, J, Feng, J, Song, C, Jiang, B, Hu, Z. Resveratrol attenuates acute kidney injury by inhibiting death receptor‑mediated apoptotic pathways in a cisplatin‑induced rat model. Mol Med Rep. 2016; 14(4): 3683-3689. https://doi.org/10.3892/mmr.2016.5714
197. Yu, M, Xue, J, Li, Y, Zhang, W, Ma, D, Liu, L, Zhang, Z. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Ach Toxicol. 2013; 87(6): 1025-1035. https://doi.org/10.1007/s00204-013-1026-4
198. Li, J, Li, L, Wang, S, Zhang, C, Zheng, L, Jia, Y, Xu, M, Zhu, T, Zhang, Y, Rong, R. Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-induced NRK-52E Cells via the Nrf2/TLR4/NF-κB pathway. Cell Physiol Biochem. 2018; 45(4): 1677-1689. https://doi.org/10.1159/000487735
199. Nabavi, SF, Moghaddam, AH, Eslami, S, Nabavi, SM. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol Trace Elem Res. 2011; 145(3): 369-374. https://doi.org/10.1007/s12011-011-9194-7
200. Hismiogullari, AA, Hismiogullari, SE, Karaca, O, Sunay, FB, Paksoy, S, Can, M, Kus, I, Seyrek, K, Yuvuz, O. The protective effect of curcumin administration on carbon tetrachloride (CCl4)-induced nephrotoxicity in rats. Pharmacol Rep. 2015; 67(3): 410-416. https://doi.org/10.1016/j.pharep.2014.10.021
201. Fan, Y, Chen, H, Peng, H, Haung, F, Zhong, J, Zhou, J. Molecular mechanisms of curcumin renoprotection in experimental acute renal injury. Front Pharmacol. 2017; 8: 912. https://doi.org/10.3389/fphar.2017.00912
202. Ugur, S, Ulu, R, Dogukan, D, Gurel, A, Yigit, IP, Gozel, N, Aygen, B, Ilhan, N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015; 37(2): 332-336. https://doi.org/10.3109/0886022X.2014.986005
203. Najafi, H, Ashtiyani, SC, Sayedzadeh, SA, Yarijani, ZM, Fakhri, S. Therapeutic effects of curcumin on the functional disturbances and oxidative stress induced by renal ischemia/reperfusion in rats. Avicenna J Phytomed. 2015; 5(6): 576–586. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4678503/
204. Mercantepe, F, Mercantepe, T, Topcu, A, Yilmaz, A, Tumkaya, A. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol. 2018; 391(9): 915–931. https://doi.org/10.1007/s00210-018-1514-4
205. Tapia, E, Sánchez-Lozada, LG, García-Niño, WR, García, E, Cerecedo, A, García-Arroyo, FE, Osorio, H, Arellano, A, Cristóbal-García, M, Loredo, ML, Molina-Jijón, E, Hernández-Damián, J, Negrette-Guzmán, M, Zazueta, C, Huerta-Yepez, S, Reyes, JL, Madero, M, Pedraza-Chaverrí, J. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic Res. 2014 48(11): 1342–1354. https://doi.org/10.3109/10715762.2014.954109
206. Liu, F, Ni, W, Zhang, J, Wang, G, Li, F. Ren, W. Administration of curcumin protects kidney tubules against renal ischemia-reperfusion injury (RIRI) by modulating nitric oxide (NO) signaling pathway. Cell Physiol Biochem. 2017; 44(1): 401–411. https://doi.org/10.1159/000484920
207. Topcu-Tarladacalisir, Y, Sapmaz-Metin, M, Karaca, T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail. 2016; 38(10): 1741-1748. https://doi.org/10.1080/0886022X.2016.1229996
208. Hammad, FT, Al-Salam, S, Lubbad, L. Curcumin provides incomplete protection of the kidney in ischemia reperfusion injury. Physiol Res. 2012; 61(5): 503-511. https://doi.org/10.33549/physiolres.932376
209. Vlahović, P, Cvetković, T, Savić, V, Stefanović, V. Dietary curcumin does not protect kidney in glycerol-induced acute renal failure. Food Chem Toxicol. 2007; 45(9): 1777-1782. https://doi.org/10.1016/j.fct.2007.04.004
210. He, L, Peng, X, Zhu, J, Liu, G, Chen, X, Tang, C, Liu, H, Liu, F, Peng, Y. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol. 2015; 93(4): 275-282. https://doi.org/10.1139/cjpp-2014-0459
211. Garg, AX, Devereaux, PJ, Hill, A, Sood, M, Aggarwal, B, Dubois, L, Hiremath, S, Guzman, R, Iyer, V, James, M, McArthur, E, Moist, L, Ouellet, G, Parikh, CR, Schumann, V, Sharan, S, Thiessen-Philbrook, H, Tobe, S, Wald, R, Walsh, M, Weir, M, Pannu, N, and Curcumin AAA AKI Investigators. Oral curcumin in elective abdominal aortic aneurysm repair: a multicentre randomized controlled trial. Can Med Assoc J. 2018; 190(43): E1273-E1280. https://doi.org/10.1503/cmaj.180510
212. Sharma, RA, Steward, WP, Gescher, AJ. Pharmacokinetic and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007; 595: 453-470. https://doi.org/10.1007/978-0-387-46401-5_20
213. Rogers, NM, Stephenson, MD, Kitching, AR, Horowitz, JD, Coates, PTH. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol. 2012; 166(1): 194–209. https://doi.org/10.1111/j.1476-5381.2011.01590.x
214. Chen, X, Sun, J, Li H, Wang, H, Lin, Y, Hu, Y, Zheng, D. Curcumin-loaded nanoparticles protect against rhabdomyolysis-induced acute kidney injury. Cell Physiol Biochem. 2017; 43(5): 2143–2154. https://doi.org/10.1159/000484233
215. Chen, Y-A, Hsu, K-Y. Pharmacokinetics of (-)-epicatechin in rabbits. Arch Pharm Res. 2009; 32(1): 149-154. https://doi.org/10.1007/s12272-009-1129-x
216. Lee, SYH, Munerol, B, Pollard, S, Youdim, KA, Pannala, AS, Kuhnle, GC, Debnam, ES, Rice-Evans, C, Spencer, JPE. The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Rad Biol Med. 2006; 40(2), 323-334. https://doi.org/10.1016/j.freeradbiomed.2005.08.031
217. Yadav, R, Kumar, D, Kumari, A, Yadav, SK. Encapsulation of catechin and epicatechin on BSA NPS improved their stability and antioxidant potential. EXCLI J. 2014; 13: 331–346. https://www.ncbi.nlm.nih.gov/pubmed/26417264
218. Tanabe, K, Tamura, Y, Lanaspa, MA, Miayzaki, M, Suzuki, N, Sato, W, Maeshima, Y, Schreiner, GF, Villarreal, FJ, Johnson, RJ, Nakagawa, T. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol. Ren Physiol. 2012; 303(9): F1264-1274. https://doi.org/10.1152/ajprenal.00227.2012
219. Malik, S, Suchal, K, Bhatia, J, Gamad, N, Dinda, AK, Gupta, YK, Arya, DS. Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate. Lab Inves. 2016; 96(8): 853-861. https://doi.org/10.1038/labinvest.2016.60
220. Prince, PD, Fischerman, L, Toblli, JE, Fraga, CG, Galleano, M. LPS-induced renal inflammation is prevented by (−)‐epicatechin in rats. Redox Biol. 2017; 11: 342-349. https://dx.doi.org/10.1016%2Fj.redox.2016.12.023
221. Nićiforović, N, Abramovič, H. Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf. 2013(1): 34-51. https://doi.org/10.1111/1541-4337.12041
222. Rechner, AR, Spencer, JP, Kuhnle, G, Hahn, U, Rice-Evans, CA. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Rad Biol Med. 2001; 30(11): 1213–1222. https://doi.org/10.1016/s0891-5849(01)00506-8
223. Rechner, AR, Pannala, AS, Rice-Evans, CA. Caffeic acid derivatives in artichoke extract are metabolised to phenolic acids in vivo. Free Rad Res. 2001; 35(2): 195–202. https://doi.org/10.1080/10715760100300741
224. Kern, SM, Bennett, RN, Mellon, FA, Kroon, PA, Garcia-Conesa, M-T. Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J Agric Food Chem. 2003; 51(20): 6050-6055. https://doi.org/10.1021/jf0302299
225. Shakeel, F, Raish, M, Anwar, MK, Al-Shdefat, R. Self-nanoemulsifying drug delivery system of sinapic acid: In vitro and in vivo evaluation. J Mol Liq. 2016; 224(A): 351-358. https://doi.org/10.1016/j.molliq.2016.10.017
226. Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid Med Cell Longev. 2016; 3571614. https://doi.org/10.1155/2016/3571614
227. Ansari, MA. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmac. 2017; 93: 646-653. https://doi.org/10.1016/j.biopha.2017.06.085