Sensory function in cerebral palsy: an overview and considerations for consequences
Main Article Content
Abstract
Alterations of sensory function are poorly recognizable but adequate sensory information and perception is a precondition for adequate motor function. It is of little surprise that in patients with cerebral palsy, the motor disorder is seen as the predominant lesion. This has led to the definition with motor overactivity and weakness in the forefront. However, sensory dysfunction was recognised already in the middle of the last century. It has been described more consistently in the modern literature and proven by fMRI and tractography studies. The sensory disorder can explain a wide part of the symptoms of cerebral palsy at least to some part. It comprises inappropriate and poorly controlled muscle activity, spasticity, impeded motor learning, developmental retardation, and pain. Treatment hence should focus on conveying the perception of stability and experiencing a wider range of different motions by more varying activities and functions. Early onset of treatment may help to reduce the developmental gap between patients and healthy children. Orthopaedic treatment, conservative and surgical, in the first place corrects biomechanically impeding deformities and provides mechanical stability.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Carr LJ, Reddy SK, Stevens S, Blair E, Love S. Definition and classification of cerebral palsy. Dev Med Child Neurol. Aug 2005;47(8):508-10.
3. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Developmental medicine and child neurology Supplement. Feb 2007;109:8-14.
4. Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Review. Dev Med Child Neurol. Aug 2005;47(8):571-6.
5. Freud S. Zur Kenntnis der cerebralen Diplegien der Kindesalters (im Anschlusse an die Little’sche Krankheit). Franz Deuticke; 1893.
6. Freud S. Die infantile Cerebrallähmung. Verlag Hölder; 1897.
7. Little WJ. On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond. 1861;3:293-344.
8. Hohman LB, Baker L, Reed R. Sensory disturbances in children with infantile hemiplegia, triplegia, and quadriplegia. American journal of physical medicine & rehabilitation. 1958;37(1):1-6.
9. Tachdjian MO, Minear WL. Sensory disturbances in the hands of children with cerebral palsy. J Bone Joint Surg Am. Jan 1958;40-A(1):85-90.
10. Tizard JP, Crothers B. Sensory disturbances in hemiplegia in childhood. Trans Am Neurol Assoc. 1952;56:227-9.
11. Poitras I, Martinie O, Robert MT, Campeau-Lecours A, Mercier C. Impact of Sensory Deficits on Upper Limb Motor Performance in Individuals with Cerebral Palsy: A Systematic Review. Brain Sci. Jun 3 2021;11(6)doi:10.3390/brainsci11060744
12. McLaughlin JF, Felix SD, Nowbar S, Ferrel A, Bjornson K, Hays RM. Lower extremity sensory function in children with cerebral palsy. Pediatr Rehabil. Jan-Mar 2005;8(1):45-52. doi:10.1080/13638490400011181
13. Sanger TD, Kukke SN. Abnormalities of tactile sensory function in children with dystonic and diplegic cerebral palsy. J Child Neurol. Mar 2007;22(3):289-93. doi:10.1177/0883073807300530
14. Prasad Mishra D. Sensory Processing/ Integration Dysfunction Affects Functional Mobility Of Children With Cerebral Palsy. Neonatology and Clinical Pediatrics. 2020;7(1):1-6. doi:10.24966/ncp-878x/100043
15. Scheck SM, Boyd RN, Rose SE. New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review. Dev Med Child Neurol. Aug 2012;54(8):684-96.
doi:10.1111/j.1469-8749.2012.04332.x
16. Staudt M. (Re-)organization of the developing human brain following periventricular white matter lesions. Neurosci Biobehav Rev. 2007;31(8):1150-6. doi:10.1016/j.neubiorev.2007.05.005
17. Di Maio V. Regulation of information passing by synaptic transmission: a short review. Brain Res. Aug 15 2008;1225:26-38. doi:10.1016/j.brainres.2008.06.016
18. Eguia MC, Rabinovich MI, Abarbanel HD. Information transmission and recovery in neural communications channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. Nov 2000;62(5 Pt B):7111-22. doi:10.1103/physreve.62.7111
19. Papadelis C, Butler EE, Rubenstein M, et al. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts. Neuroimage Clin. 2018;17:198-212.
doi:10.1016/j.nicl.2017.10.021
20. Pannek K, Boyd RN, Fiori S, Guzzetta A, Rose SE. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions. Neuroimage Clin. 2014;5:84-92. doi:10.1016/j.nicl.2014.05.018
21. Trivedi R, Agarwal S, Shah V, et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. Neuroradiology. Aug 2010;52(8):759-65. doi:10.1007/s00234-010-0703-8
22. Yoshida S, Hayakawa K, Yamamoto A, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. Oct 2010;52(10):935-40. doi:10.1111/j.1469-8749.2010.03669.x
23. Alves-Pinto A, Emch M, Lampe R. Effects of Piano Training in Unilateral Cerebral Palsy Using Probabilistic and Deterministic Tractography: A Case Report. Front Hum Neurosci. 2021;15:622082. doi:10.3389/fnhum.2021.622082
24. Scheck SM, Fripp J, Reid L, et al. Extent of altered white matter in unilateral and bilateral periventricular white matter lesions in children with unilateral cerebral palsy. Res Dev Disabil. Aug 2016;55:368-76. doi:10.1016/j.ridd.2016.04.007
25. Son SM, Park SH, Moon HK, et al. Diffusion tensor tractography can predict hemiparesis in infants with high risk factors. Neurosci Lett. Feb 13 2009;451(1):94-7. doi:10.1016/j.neulet.2008.12.033
26. Mailleux L, Franki I, Emsell L, et al. The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part B diffusion imaging and tractography. Res Dev Disabil. Feb 2020;97:103569. doi:10.1016/j.ridd.2019.103569
27. Lennartsson F, Holmstrom L, Eliasson AC, et al. Advanced fiber tracking in early acquired brain injury causing cerebral palsy. AJNR Am J Neuroradiol. Jan 2015;36(1):181-7. doi:10.3174/ajnr.A4072
28. Knijnenburg ACS, Steinbusch CVM, Janssen-Potten YJM, Defesche A, Vermeulen RJ. Neuro-imaging characteristics of sensory impairment in cerebral palsy; a systematic review. Front Rehabil Sci. 2023;4:1084746. doi:10.3389/fresc.2023.1084746
29. Kato H, Izumiyama M. Impaired motor control due to proprioceptive sensory loss in a patient with cerebral infarction localized to the postcentral gyrus. J Rehabil Med. Feb 2015;47(2):187-90. doi:10.2340/16501977-1900
30. Dan B. Cerebral palsy is a sensorimotor disorder. Dev Med Child Neurol. Jul 2020;62(7):768. doi:10.1111/dmcn.14542
31. Bleyenheuft Y, Gordon AM. Precision grip control, sensory impairments and their interactions in children with hemiplegic cerebral palsy: a systematic review. Res Dev Disabil. Sep 2013;34(9):3014-28. doi:10.1016/j.ridd.2013.05.047
32. Mailleux L, Simon-Martinez C, Radwan A, et al. White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Struct Funct. Jun 2020;225(5):1495-1509. doi:10.1007/s00429-020-02070-1
33. Marsico P, Meier L, van der Linden ML, Mercer TH, van Hedel HJA. Psychometric Properties of Lower Limb Somatosensory Function and Body Awareness Outcome Measures in Children with Upper Motor Neuron Lesions: A Systematic Review. Dev Neurorehabil. Jul 2022;25(5):314-327. doi:10.1080/17518423.2021.2011976
34. Marsico P, Meier L, van der Linden ML, Mercer TH, van Hedel HJA. Feasibility, Validity, and Reliability of Lower Limb Tactile and Body Awareness Assessments in Children With Upper Motor Neuron Lesions. Arch Phys Med Rehabil. Sep 2023;104(9):1447-1455. doi:10.1016/j.apmr.2023.02.017
35. Solomonow M. Sensory-motor control of ligaments and associated neuromuscular disorders. J Electromyogr Kinesiol. Dec 2006;16(6):549-67. doi:10.1016/j.jelekin.2006.08.004
36. Cruse H, Dean J, Heuer H, Schmidt RA. Utilisation of sensory information for motor control. In: Neumann O, ed. Relationships between perception and action. Springer,; 1990:43-79.
37. Wolpert DM, Ghahramani Z, Flanagan JR. Perspectives and problems in motor learning. Trends Cogn Sci. Nov 1 2001;5(11):487-494. doi:10.1016/s1364-6613(00)01773-3
38. Pavao SL, Silva FP, Savelsbergh GJ, Rocha NA. Use of sensory information during postural control in children with cerebral palsy: systematic review. J Mot Behav. 2015;47(4):291-301. doi:10.1080/00222895.2014.981498
39. Tsay JS, Haith AM, Ivry RB, Kim HE. Interactions between sensory prediction error and task error during implicit motor learning. PLoS Comput Biol. Mar 2022;18(3):e1010005. doi:10.1371/journal.pcbi.1010005
40. Brunner R, K. G-N. A critical view on the importance of treating spasticity and new options to improve function in patients with cerebral palsy GMFCS I-III. Medical Research Archives. 2023;11(4)doi:10.18103/mra.v11i4.3812
41. Deitz JC, Richardson PK, Crowe TK, Westcott SL. Performance of Children with Learning Disablities and Motor Delays on the Pediatric Clinical Test of Sensory Interaction for Balance (P-CTSIB). Physical & Occupational Therapy In Pediatrics. 2009;16(3):1-21. doi:10.1080/J006v16n03_01
42. Guzzetta A, Mercuri E, Cioni G. Visual disorders in children with brain lesions: 2. Visual impairment associated with cerebral palsy. Eur J Paediatr Neurol. 2001;5(3):115-9. doi:10.1053/ejpn.2001.0481
43. Philip SS, Guzzetta A, Chorna O, Gole G, Boyd RN. Relationship between brain structure and Cerebral Visual Impairment in children with Cerebral Palsy: A systematic review. Res Dev Disabil. Jan 28 2020;99:103580. doi:10.1016/j.ridd.2020.103580
44. Ostergaard CS, Pedersen NSA, Thomasen A, Mechlenburg I, Nordbye-Nielsen K. Pain is frequent in children with cerebral palsy and negatively affects physical activity and participation. Acta Paediatr. Jan 2021;110(1):301-306. doi:10.1111/apa.15341
45. Schmidt SM, Hagglund G, Alriksson-Schmidt AI. Bone and joint complications and reduced mobility are associated with pain in children with cerebral palsy. Acta Paediatr. Mar 2020;109(3):541-549.
doi:10.1111/apa.15006
46. Xanthos DN, Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. Jan 2014;15(1):43-53. doi:10.1038/nrn3617
47. Vinson J, Shank L, Thomas PD, Warschausky S. Self-generated Domains of Quality of Life in Children with and Without Cerebral Palsy. J Dev Phys Disabil. Oct 1 2010;22(5):497-508. doi:10.1007/s10882-010-9187-z
48. Ramstad K, Jahnsen R, Skjeldal OH, Diseth TH. Mental health, health related quality of life and recurrent musculoskeletal pain in children with cerebral palsy 8-18 years old. Disabil Rehabil. 2012;34(19):1589-95. doi:10.3109/09638288.2012.656794
49. Jahnsen R, Villien L, Stanghelle JK, Holm I. Fatigue in adults with cerebral palsy in Norway compared with the general population. Dev Med Child Neurol. May 2003;45(5):296-303. doi:10.1017/s0012162203000562
50. Coletti RH. The ischemic model of chronic muscle spasm and pain. Eur J Transl Myol. Jan 18 2022;32(1)
doi:10.4081/ejtm.2022.10323
51. Raiter AM, Burkitt CC, Merbler A, Lykken L, Symons FJ. Caregiver-Reported Pain Management Practices for Individuals With Cerebral Palsy. Arch Rehabil Res Clin Transl. Mar 2021;3(1):100105.
doi:10.1016/j.arrct.2021.100105
52. Viswanath M, Jha R, Gambhirao AD, et al. Comorbidities in children with cerebral palsy: a single-centre cross-sectional hospital-based study from India. BMJ Open. Jul 10 2023;13(7):e072365. doi:10.1136/bmjopen-2023-072365
53. Jonsson U, Eek MN, Sunnerhagen KS, Himmelmann K. Health Conditions in Adults With Cerebral Palsy: The Association With CP Subtype and Severity of Impairments. Front Neurol. 2021;12:732939. doi:10.3389/fneur.2021.732939
54. Macaulay TR, Peters BT, Wood SJ, Clement GR, Oddsson L, Bloomberg JJ. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight. Front Syst Neurosci. 2021;15:658985. doi:10.3389/fnsys.2021.658985
55. Motanova E, Bekreneva M, Rukavishnikov I, Shigueva TA, Saveko AA, Tomilovskaya ES. Application of Space Technologies Aimed at Proprioceptive Correction in Terrestrial Medicine in Russia. Front Physiol. 2022;13:921862. doi:10.3389/fphys.2022.921862
56. Giray E, Kenis-Coskun O, Gungor S, Karadag-Saygi E. Does stabilizing input pressure orthosis vest, lycra-based compression orthosis, improve trunk posture and prevent hip lateralization in children with cerebral palsy? Turk J Phys Med Rehabil. Jun 2018;64(2):100-107. doi:10.5606/tftrd.2018.1332
57. Hylton N, Allen C. The development and use of SPIO Lycra compression bracing in children with neuromotor deficits. Pediatr Rehabil. Apr-Jun 1997;1(2):109-16. doi:10.3109/17518429709025853
58. Ko MS, Lee JA, Kang SY, Jeon HS. Effect of Adeli suit treatment on gait in a child with cerebral palsy: a single-subject report. Physiother Theory Pract. May 2015;31(4):275-82. doi:10.3109/09593985.2014.996307
59. Belizon-Bravo N, Romero-Galisteo RP, Cano-Bravo F, Gonzalez-Medina G, Pinero-Pinto E, Luque-Moreno C. Effects of Dynamic Suit Orthoses on the Spatio-Temporal Gait Parameters in Children with Cerebral Palsy: A Systematic Review. Children (Basel). Nov 5 2021;8(11)doi:10.3390/children8111016
60. Perpetuini D, Russo EF, Cardone D, et al. Use and Effectiveness of Electrosuit in Neurological Disorders: A Systematic Review with Clinical Implications. Bioengineering (Basel). Jun 2 2023;10(6)doi:10.3390/bioengineering10060680
61. MacWilliams BA, McMulkin ML, Duffy EA, et al. Long-term effects of spasticity treatment, including selective dorsal rhizotomy, for individuals with cerebral palsy. Dev Med Child Neurol. Nov 10 2021;
doi:10.1111/dmcn.15075