Alterations in Cortical Thickness in Children with Congenital Strabismus and Dissociated Vertical Deviation
Main Article Content
Abstract
Introduction: Little is known about the morphometric changes that occur in the cerebral cortex of children with congenital strabismus and Dissociated Vertical Deviation (DVD). Mathematical morphology provides the opportunity to discover alterations in cortical thickness.
Objective: Identify and measure differences in cortical thickness in children with congenital strabismus and DVD.
Materials and Methods: Twenty-two MRI brain studies were conducted, each comprising 120 sagittal slices of 1 mm. A cohort of 11 healthy children formed the control group, and a cohort of 11 children with congenital strabismus and Dissociated Vertical Deviation, both in Dissociated Esotropia and Dissociated Exotropia formed the case group. Differences in cortical thickness between both groups were compared and identified using the FreeSurfer suite. Subsequently, areas of interest were analyzed using the ImageJ program to determine density, area, size, and pixel quantity in these regions. Study results are presented through tables and figures.
Results: Twelve inflated brain projections were obtained from 2640 MRI images. Thickness differences between both groups exhibited three areas with significant morphometric changes: the Left Angular Gyrus, Left Supramarginal Gyrus, and Right Pars Opercularis.
Discussion: Children with congenital strabismus and DVD showed changes in cortical thickness that could be identified and measured through Voxel-Based Morphometry (VBM). It is plausible to consider that these changes are related to suppression, aiming to avoid diplopia.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Bridgeman: The Theory of Binocular Vision: Ewald... - Google Académico. Accessed November 6, 2023. https://scholar.google.com/scholar_lookup?title=The%20Theory%20of%20Binocular%20Vision%3A%20Ewald%20Hering%20%281868%29&author=B%20Bridgeman&author=L%20Stark&publication_year=1977&book=The%20Theory%20of%20Binocular%20Vision%3A%20Ewald%20Hering%20%281868%29
3. Thompson B, Maehara G, Goddard E, Farivar R, Mansouri B, Hess RF. Long-Range Interocular Suppression in Adults with Strabismic Amblyopia: A Pilot fMRI Study. Vision. 2019;3(1):2. doi:10.3390/vision3010002
4. Economides JR, Adams DL, Horton JC. Interocular Suppression in Primary Visual Cortex in Strabismus. J Neurosci. 2021;41(25): 5522-5533. doi:10.1523/JNEUROSCI.0044-21.2021
5. Mechelli A, Crinion JT, Long S, et al. Dissociating reading processes on the basis of neuronal interactions. Journal of cognitive neuroscience. 2005;17(11):1753-1765.
6. Gallegos-Duarte M M. Dissociated Vertical Divergence. Strabismus. 2012;20(1):31-32. doi:10.3109/09273972.2011.651769
7. ten Tusscher MPM. Dissociated Deviation in the Infantile Strabismus Syndrome. Strabismus. 2012;20(1):33-34. doi:10.3109/09 273972.2011.650816
8. Mendiola Santibañez MSJ, Gallegos-Duarte M, Ortiz-Retana JJ, López-Campos CE. Segmentación y análisis granulométrico de sustancia blanca y gris en IRM para el estudio del estrabismo usando transformaciones morfológicas. 2007;28(2):92-104.
9. Mendola JD, Conner IP, Roy A, et al. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Human Brain Mapping. 2005;25(2):222-236. doi:10.1002/hbm.20109
10. Ouyang J, Yang L, Huang X, et al. The atrophy of white and gray matter volume in patients with comitant strabismus: Evidence from a voxel-based morphometry study. Mol Med Rep. 2017;16(3):3276-3282. doi:10.3892 /mmr.2017.7006
11. Gallegos-Duarte M. Comportamiento de la coherencia bioléctrica cortical en el estrabismo congénito. Tesis Doctoral. Universidad Autónoma de Querétaro; 2017.
12. Bagolini B. Objective evaluation of sensorial and sensorimotorial status in esotropia: their importance in surgical prognosis. British Journal of Ophthalmology. 1985;69(10):725-728. doi:10.1136/bjo.69.10.725
13. Brodsky MC. The Role of Cortical Alterations in Infantile Strabismus. Strabismus. 2012;20(1):35-36. doi:10.3109/09273972.2011.650817
14. Gallegos-Duarte M MS, JJ OR, Rubin de Celis-Monteverde B, Vidal-Pineda R, Sigala-Zamora A. Dissociated deviation. A strabismus of cortical origin. Cir Cir. 2007; 75(4):237-243.
15. Höflich A, Ganger S, Tik M, et al. Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control. NeuroImage. 2017;147:198-203. doi:10.1016 /j.neuroimage.2016.12.032
16. Almeida Montes LG, Prado Alcantara H, Martinez Garcia RB, De La Torre LB, Avila Acosta D, Gallegos-Duarte M. Brain Cortical Thickness in ADX: Age, Sex, and Clinical Correlations. Journal of Attention Disorders. 2013;17(8):641-654. doi:10.1177/1087054711434351
17. McAlonan GM. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2004; 128(2):268-276. doi:10.1093/ brain/awh332
18. Duan Y, Norcia AM, Yeatman JD, Mezer A. The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia. Invest Ophthalmol Vis Sci. 2015;56(9):5152-5160. doi:10.1167/iovs.15-17097
19. Chan S tak, Tang K wing, Lam K cheung, Chan L kong, Mendola JD, Kwong KK. Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans. NeuroImage. 2004;22(2):986-994. doi:10.1016/j.neuroimage.2004.02.021
20. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the Structural Core of Human Cerebral Cortex. PLOS Biology. 2008; 6(7):e159. doi:10.1371/journal.pbio.0060159
21. Horton J, Hocking D. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci. 1996;16 (5):1791-1807. doi:10.1523/JNEUROSCI.16-05-01791.1996
22. Sabbah N, Sanda N, Authié CN, et al. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss. Sci Rep. 2017;7(1):43223. doi:10.1038/srep43223
23. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis. NeuroImage. 1999;9 (2):179-194. doi:10.1006/nimg.1998.0395
24. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402-1418. doi:10. 1016/j.neuroimage.2012.02.084
25. Pagnozzi AM, Fripp J, Rose SE. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies. NeuroImage. 2019; 201:116018. doi:10.1016/ j.neuroimage.2019.116018
26. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences. 2000;97 (20):11050-11055.
27. Fischl B, Sereno MI, Dale AM. Cortical Surface-Based Analysis. NeuroImage. 1999;9 (2):195-207. doi:10.1006/nimg.1998.0396
28. Abramoff, M.D, Magalhaes, P.J, Ram, S.J. Image Processing with ImageJ. Biophotonics International. 2004;11(7):36-42.
29. Yan X, Lin X, Wang Q, et al. Dorsal Visual Pathway Changes in Patients with Comitant Extropia. Yang S, ed. PLoS ONE. 2010;5(6): e10931. doi:10.1371/journal.pone.0010931
30. Gallegos-Duarte M. Regarding Noise and Visual Confusion. EC Neurology. 2016; 4(2):46-47.
31. Harrad R, Sengpiel F, Blakemore C. Physiology of suppression in strabismic amblyopia. Br J Ophthalmol. 1996; 80(4):373-377.
32. Kohler PJ, Meredith WJ, Norcia AM. Revisiting the functional significance of binocular cues for perceiving motion-in-depth. Nat Commun. 2018;9(1):3511. doi:10. 1038/s41467-018-05918-7
33. Ondategui Parra JC, Borrás García R, Pacheco Cutillas M. Visión binocular. Universitat Politècnica de Catalunya; 1998. Accessed September 13, 2016. http://public.eblib.com/choice/PublicFullRecord.aspx?p=4310074
34. Bock EA, Fesi JD, Baillet S, Mendola JD. Tagged MEG measures binocular rivalry in a cortical network that predicts alternation rate. Price NSC, ed. PLoS ONE. 2019;14(7):e0 218529. doi:10.1371/journal.pone.0218529
35. Molnar-Szakacs I, Iacoboni M, Koski L, Mazziotta JC. Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cerebral Cortex. 2005;15 (7):986-994. doi:10.1093/cercor/bhh199