The Current and Evolving Landscape of Breast Cancer Prediction and Prognosis

Main Article Content

Vijay Sharma

Abstract

The biological behaviour of breast cancer is remarkably heterogeneous and it is essential to have tools which can provide the necessary risk stratification to plan clinical management. Breast cancer prediction and prognosis needs to be holistic, and account for multiple levels of organisation. The histological classification and grading of the tumour itself presents valuable predictive and prognostic information. Hormone receptor status remains a mainstay, but roles may emerge for assessment of the intrinsic molecular subtype, for a molecular subclassification of triple negative carcinomas, and for whole genome sequencing. The recent discovery that antibody drug conjugates are effective in patients with weak HER-2 protein expression has led to the definition of the HER-2 low group.


There has been a proliferation in predictive and prognostic models, numbering over 900, but the majority are at high risk of bias and tend to perform less well when applied to populations beyond the development cohort. The Nottingham Prognostic Index is a notable exception. Of the molecular risk stratification tools currently available, Oncotype Dx is the most widely recommended and used, but the question as to which test is superior remains unanswerable with current data. There is growing interest in omics-based approaches from which a number of biomarkers are being developed.


It is well established that the microenvironment of the tumour is key to the tumour’s behaviour. Some components contain and destroy the cancer, whereas others are co-opted by the tumour and aid in its progression; the current evidence is reviewed, including the current status of tumour infiltrating lymphocyte assessment and immune checkpoint inhibition in breast cancer. The use of the liquid biopsy to achieve early detection of tumours and to manage tumour evolution is receiving intense attention; approaches include circulating tumour cells and circulating tumour DNA. Specific assessment of tumour giant cells may also provide the ability to anticipate tumour evolution. The influence of the gut microbiome on breast cancer is an intriguing development which requires further intensive study. There is a paucity of biomarkers in the setting of hereditary breast cancer. The use of polygenic risk scores in this setting is an interesting development requiring further study.


The greatest challenge of all is to pull from such complexity key decision nodes that are clear enough to guide treatment decisions without losing the depth and richness of the information that underlies them. Seeking and finding this balance has been and will continue to be the holy grail of all endeavours in this field.


 

Article Details

How to Cite
SHARMA, Vijay. The Current and Evolving Landscape of Breast Cancer Prediction and Prognosis. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4912>. Date accessed: 22 dec. 2024. doi: https://doi.org/10.18103/mra.v11i12.4912.
Section
Research Articles

References

1. Elson NC, Lewis JD, Shaughnessy EA, Reyna C. Lessons from other fields of medicine, Part 1: Breast cancer. Handb Clin Neurol. 2023;192:101-118. doi:10.1016/B978-0-323-85538-9.00003-1
2. Holler A, Nguyen-Strauli BD, Frauchiger-Heuer H, Ring A. "Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where are We Now?". Breast Cancer (Dove Med Press). 2023;15:525-540. doi:10.2147/BCTT.S340741
3. Members of Breast Cancer Expert Panel on C. [Expert panel consensus on pathological diagnosis of breast cancer with neoadjuvant therapy, the 2020 version]. Zhonghua Bing Li Xue Za Zhi. Apr 8 2020;49(4):296-304. doi:10.3760/cma.j.cn112151-20200102-00007
4. Rakha EA, Tse GM, Quinn CM. An update on the pathological classification of breast cancer. Histopathology. Jan 2023;82(1):5-16. doi:10.1111/his.14786
5. Popovic M, Silovski T, Krizic M, Dedic Plavetic N. HER2 Low Breast Cancer: A New Subtype or a Trojan for Cytotoxic Drug Delivery? Int J Mol Sci. May 4 2023;24(9)doi:10.3390/ijms24098206
6. Phung MT, Tin Tin S, Elwood JM. Prognostic models for breast cancer: a systematic review. BMC Cancer. Mar 14 2019;19(1):230. doi:10.1186/s12885-019-5442-6
7. Green AR, Soria D, Powe DG, et al. Nottingham prognostic index plus (NPI+) predicts risk of distant metastases in primary breast cancer. Breast Cancer Res Treat. May 2016;157(1):65-75. doi:10.1007/s10549-016-3804-1
8. Hueting TA, van Maaren MC, Hendriks MP, Koffijberg H, Siesling S. The majority of 922 prediction models supporting breast cancer decision-making are at high risk of bias. J Clin Epidemiol. Dec 2022;152:238-247. doi:10.1016/j.jclinepi.2022.10.016
9. Gao Y, Li S, Jin Y, et al. An Assessment of the Predictive Performance of Current Machine Learning-Based Breast Cancer Risk Prediction Models: Systematic Review. JMIR Public Health Surveill. Dec 29 2022;8(12):e35750. doi:10.2196/35750
10. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. Dec 30 2004;351(27):2817-26. doi:10.1056/NEJMoa041588
11. Sparano JA, Crager MR, Tang G, Gray RJ, Stemmer SM, Shak S. Development and Validation of a Tool Integrating the 21-Gene Recurrence Score and Clinical-Pathological Features to Individualize Prognosis and Prediction of Chemotherapy Benefit in Early Breast Cancer. J Clin Oncol. Feb 20 2021;39(6):557-564. doi:10.1200/JCO.20.03007
12. Cardoso F, van't Veer LJ, Bogaerts J, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. Aug 25 2016;375(8):717-29. doi:10.1056/NEJMoa1602253
13. Lopes Cardozo JMN, Drukker CA, Rutgers EJT, et al. Outcome of Patients With an Ultralow-Risk 70-Gene Signature in the MINDACT Trial. J Clin Oncol. Apr 20 2022;40(12):1335-1345. doi:10.1200/JCO.21.02019
14. Wallden B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. Aug 22 2015;8:54. doi:10.1186/s12920-015-0129-6
15. Dubsky P, Brase JC, Jakesz R, et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients. Br J Cancer. Dec 10 2013;109(12):2959-64. doi:10.1038/bjc.2013.671
16. Ellis MJ, Tao Y, Luo J, et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst. Oct 1 2008;100(19):1380-8. doi:10.1093/jnci/djn309
17. Cardoso F, Kyriakides S, Ohno S, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. Oct 1 2019;30(10):1674. doi:10.1093/annonc/mdz189
18. Noordhoek I, Treuner K, Putter H, et al. Breast Cancer Index Predicts Extended Endocrine Benefit to Individualize Selection of Patients with HR(+) Early-stage Breast Cancer for 10 Years of Endocrine Therapy. Clin Cancer Res. Jan 1 2021;27(1):311-319. doi:10.1158/1078-0432.CCR-20-2737
19. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. Aug 10 2006;24(23):3726-34. doi:10.1200/JCO.2005.04.7985
20. Sparano JA, Gray RJ, Makower DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. Jul 12 2018;379(2):111-121. doi:10.1056/NEJMoa1804710
21. Bartlett JM, Bayani J, Marshall A, et al. Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others. J Natl Cancer Inst. Sep 2016;108(9)doi:10.1093/jnci/djw050
22. Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules. Jun 14 2023;28(12)doi:10.3390/molecules28124768
23. He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. Jan 2023;88:187-200. doi:10.1016/j.semcancer.2022.12.009
24. Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel). Feb 20 2023;15(4)doi:10.3390/cancers15041346
25. Roberts E, Howell S, Evans DG. Polygenic risk scores and breast cancer risk prediction. Breast. Feb 2023;67:71-77. doi:10.1016/j.breast.2023.01.003
26. Zhang W, Xu K, Li Z, Wang L, Chen H. Tumor immune microenvironment components and the other markers can predict the efficacy of neoadjuvant chemotherapy for breast cancer. Clin Transl Oncol. Jun 2023;25(6):1579-1593. doi:10.1007/s12094-023-03075-y
27. 27. Valenza C, Taurelli Salimbeni B, Santoro C, Trapani D, Antonarelli G, Curigliano G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers (Basel). Jan 26 2023;15(3)doi:10.3390/cancers15030767
28. Emens LA, Loi S. Immunotherapy Approaches for Breast Cancer Patients in 2023. Cold Spring Harb Perspect Med. Apr 3 2023;13(4)doi:10.1101/cshperspect.a041332
29. Falato C, Schettini F, Pascual T, Braso-Maristany F, Prat A. Clinical implications of the intrinsic molecular subtypes in hormone receptor-positive and HER2-negative metastatic breast cancer. Cancer Treat Rev. Jan 2023;112:102496. doi:10.1016/j.ctrv.2022.102496
30. Lu B, Natarajan E, Balaji Raghavendran HR, Markandan UD. Molecular Classification, Treatment, and Genetic Biomarkers in Triple-Negative Breast Cancer: A Review. Technol Cancer Res Treat. Jan-Dec 2023;22:15330338221145246. doi:10.1177/15330338221145246
31. Tierno D, Grassi G, Scomersi S, et al. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci. Jun 2 2023;24(11)doi:10.3390/ijms24119688
32. Cristofanilli M, Pierga JY, Reuben J, et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol. Feb 2019;134:39-45. doi:10.1016/j.critrevonc.2018.12.004
33. Pierga JY, Bidard FC, Mathiot C, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res. Nov 1 2008;14(21):7004-10. doi:10.1158/1078-0432.CCR-08-0030
34. Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. Apr 2014;15(4):406-14. doi:10.1016/S1470-2045(14)70069-5
35. Smerage JB, Barlow WE, Hortobagyi GN, et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. Nov 1 2014;32(31):3483-9. doi:10.1200/JCO.2014.56.2561
36. Jacot W, Cottu P, Berger F, et al. Actionability of HER2-amplified circulating tumor cells in HER2-negative metastatic breast cancer: the CirCe T-DM1 trial. Breast Cancer Res. Nov 14 2019;21(1):121. doi:10.1186/s13058-019-1215-z
37. Pestrin M, Bessi S, Puglisi F, et al. Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res Treat. Jul 2012;134(1):283-9. doi:10.1007/s10549-012-2045-1
38. Bidard FC, Jacot W, Kiavue N, et al. Efficacy of Circulating Tumor Cell Count-Driven vs Clinician-Driven First-line Therapy Choice in Hormone Receptor-Positive, ERBB2-Negative Metastatic Breast Cancer: The STIC CTC Randomized Clinical Trial. JAMA Oncol. Jan 1 2021;7(1):34-41. doi:10.1001/jamaoncol.2020.5660
39. Diamantopoulou Z, Castro-Giner F, Schwab FD, et al. The metastatic spread of breast cancer accelerates during sleep. Nature. Jul 2022;607(7917):156-162. doi:10.1038/s41586-022-04875-y
40. Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. Jul 11 2014;345(6193):216-20. doi:10.1126/science.1253533
41. Gianni C, Palleschi M, Merloni F, et al. Cell-Free DNA Fragmentomics: A Promising Biomarker for Diagnosis, Prognosis and Prediction of Response in Breast Cancer. Int J Mol Sci. Nov 17 2022;23(22)doi:10.3390/ijms232214197
42. Csendes D, Gutlapalli SD, Prakash K, et al. Gastrointestinal Microbiota and Breast Cancer Chemotherapy Interactions: A Systematic Review. Cureus. Nov 2022;14(11):e31648. doi:10.7759/cureus.31648
43. Terrisse S, Derosa L, Iebba V, et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. Sep 2021;28(9):2778-2796. doi:10.1038/s41418-021-00784-1
44. Zhang X, Yu L, Shi J, et al. Antibiotics modulate neoadjuvant therapy efficiency in patients with breast cancer: a pilot analysis. Sci Rep. Jul 7 2021;11(1):14024. doi:10.1038/s41598-021-93428-w
45. Tzeng A, Sangwan N, Jia M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. Apr 16 2021;13(1):60. doi:10.1186/s13073-021-00874-2
46. Neves Rebello Alves L, Dummer Meira D, Poppe Merigueti L, et al. Biomarkers in Breast Cancer: An Old Story with a New End. Genes (Basel). Jun 28 2023;14(7)doi:10.3390/genes14071364
47. Casotti MC, Meira DD, Zetum ASS, et al. Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success. Genes (Basel). Mar 26 2023;14(4)doi:10.3390/genes14040801