The RNA Genome Sequencing Demonstrates Increased Production of Metabolic Genes in Late Ages in Highly Differentiated Tissues

Main Article Content

Lev Salnikov Saveli Goldberg Eugene Pinsky

Abstract

In this paper, we continue statistical analysis of RNA-Seq results of the whole genome of Mus musculus during their lifetime.  We propose that the implementation of the developmental program by cells and their transition to the active performance of functions is the main mechanism of aging. The data obtained confirm the basis of our ideas that the triggering of aging processes is embedded in the very "design" of multicellulars. Previously, we noted a gradual decrease in RNA production in the part of the genome responsible for cellular infrastructure. At the same time, we noted a rise in the level of production of genes of this part in late ages. We hypothesized that this is associated with the increased demand of cells for energy production to maintain the weakening functions of the organism. We identified a block of 24 most productive genes responsible for metabolic activity and energy production in the cell. As shown by data analysis, it was these genes that appeared to be responsible for the rise in the overall activity of infrastructural genes in the late period. We also hypothesized that the rise in demand for cellular energy structures in the aging organism is most pronounced in highly differentiated tissues. For this purpose, we distinguished two groups of tissues, according to the level of their mitotic index. The results show that the rise in the production of the infrastructural part of the genome found in late ages is due to RNA synthesis of metabolic genes and is expressed only in the group of tissues with low mitotic index. We plan to further investigate the age-related dynamics of the proteome, comparing our results with other databases to identify similar patterns of RNA production dynamics in them.

Keywords: aging, RNA-Seq data analysis, metabolic activity, mitotic activity

Article Details

How to Cite
SALNIKOV, Lev; GOLDBERG, Saveli; PINSKY, Eugene. The RNA Genome Sequencing Demonstrates Increased Production of Metabolic Genes in Late Ages in Highly Differentiated Tissues. Medical Research Archives, [S.l.], v. 12, n. 1, jan. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4927>. Date accessed: 30 dec. 2024. doi: https://doi.org/10.18103/mra.v12i1.4927.
Section
Research Articles

References

1. Larocca D, Lee J, West M.D, Labat I, Sternberg H. (2021) No Time to Age: Uncoupling Aging from Chronological Time. Genes (Basel). Apr 21;12(5):611. doi: 10.3390/genes12050611.
2. De Magalhães J. P, Church GM. (2005) Genomes optimize reproduction: aging as a consequence of the developmental program. Physiology (Bethesda). Aug;20:252-9. doi: 10.1152/physiol.00010.2005.
3. Bilinski T, Bylak A, Kukuła K, Zadrag-Tecza R. (2021) Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis. PeerJ. Nov 2;9:e12286. doi: 10.7717/peerj.12286.
4. Gems D, Kern C.C., Nour J., Ezcurra M. (2021) Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol.;9:688788. Published 2021 Aug 27. doi:10.3389/fcell.2021.688788.
5. Kirkwood, T.B.L., Holliday, R. (1979). The evolution of ageing and longevity. Proc. R. Soc. London Ser. B Biol. Sci. 205, 531–546.
6. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398-411, doi: 10.2307/2406060.
7. Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. (2022) Epigenetics, DNA damage, and aging. J Clin Invest. Aug 15;132(16):e158446.
doi: 10.1172/JCI158446.
8. Kinzina E.D., Podolskiy D.I., Dmitriev S.E,, Gladyshev V.N. (2019) Patterns of Aging Biomarkers, Mortality, and Damaging Mutations Illuminate the Beginning of Aging and Causes of Early-Life Mortality. Cell Rep. Dec 24;29(13):4276-4284.e3. doi: 10.1016/j.celrep.2019.11.091.
9. Walker R.F. (2022) A Mechanistic Theory of Development-Aging Continuity in Humans and Other Mammals. Cells. Mar 7;11(5):917. doi: 10.3390/cells11050917.
10. West M.D., Sternberg H., Labat I., Janus J., Chapman K.B., Malik N.N., de Grey A.D., Larocca D. (2019) Toward a unified theory of aging and regeneration. Regen Med. Sep;14(9):867-886. doi: 10.2217/rme-2019-0062. Epub 2019 Aug 28.
11. Salnikov, L., Baramiya, M. G. (2020) The Ratio of the Genome Two Functional Parts Activity as the Prime Cause of Aging. Frontiers in Aging, 1. https://doi.org/10.3389/fragi.2020.608076
12. Salnikov L., Baramiya M. G. (2021) From Autonomy to Integration, From Integration to Dynamically Balanced Integrated Co-existence: Non-aging as the Third Stage of Development. Frontiers in Aging, 2. doi/org/10.3389/fragi.2021.655315
13. Naviaux, R.K. (2019) Incomplete Healing as a Cause of Aging: The Role of Mitochondria and the Cell Danger Response. Biology, 8, 27. https://doi.org/10.3390/biology8020027
14. Salnikov L. Aging is a Side Effect of the Ontogenesis Program of Multicellular Organisms. Biochemistry (Mosc). 2022 Dec;87(12):1498-1503.
doi: 10.1134/S0006297922120070. PMID: 36717443.
15. Santra M, Dill K.A, de Graff A.M.R. (2019) Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci U S A. Oct 29;116(44):22173-22178. doi: 10.1073/pnas.1906592116. Epub 2019 Oct 16.
16. Meyer, D. H., & Schumacher, B. (2021). BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell, 20(3). https://doi.org/10.1111/acel.13320
17. Stoeger, T., Grant, R.A., McQuattie-Pimentel, A.C. et al. (2022) Aging is associated with a systemic length-associated transcriptome imbalance. Nat Aging. https://doi.org/10.1038/s43587-022-00317-6
18. Stegeman R, Weake VM. (2017) Transcriptional Signatures of Aging. J Mol Biol. Aug 4;429(16):2427-2437. doi: 10.1016/j.jmb.2017.06.019. Epub 2017 Jul 3.
19. Lu J.Y., Simon M., Zhao Y., Ablaeva J., Corson N, et al. (2022) Comparative transcriptomics reveals circadian and pluripotency networks as two pillars of longevity regulation. Cell Metab. Jun 7;34(6):836-856.e5.
doi: 10.1016/j.cmet.2022.04.011. Epub 2022 May 16.
20. Ferreira M., Francisco S., Soares A.R., Nobre A., Pinheiro M., et al. (2021) Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues. Aging (Albany NY). Jul 29;13(14):18150-18190. doi: 10.18632/aging.203379. Epub 2021 Jul 29.
21. Salnikov L, Goldberg S, Rijhwani H, Shi Y, Pinsky E. The RNA-Seq data analysis shows how the ontogenesis defines aging. Front Aging. 2023 Mar 14;4:1143334. doi: 10.3389/fragi.2023.1143334. PMID: 36999000; PMCID: PMC10046809.
22. Hounkpe B.W., Chenou F., de Lima F., De Paula E.V. (2021) HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets. Nucleic Acids Res. Jan 8;49(D1):D947-D955. doi: 10.1093/nar/gkaa609.
23. Rhoads T. W., Anderson R. M. (2021). Taking the long view on metabolism. Science. 373(6556):738-739.
doi: 10.1126/science.abl4537.
24. Amorim, J.A., Coppotelli, G., Rolo, A.P. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 18, 243–258 (2022). https://doi.org/10.1038/s41574-021-00626-7
25. Lev Salnikov. Relation of Known Hallmarks of Aging to the Ontogenesis Program. OAJ Gerontol & Geriatric Med. 2023; 7(2): 555706.
Doi: 10.19080/OAJGGM.2023.07.555706
26. Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med. 2023 Nov 1;208:657-671. doi: 10.1016/j.freeradbiomed.2023.09.019. Epub 2023 Sep 20. PMID: 37739140.
27. Naia, L., Shimozawa, M., Bereczki, E. et al. Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in App knock-in Alzheimer mouse models. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02289-4
28. Anisimova A.S., Meerson M.B, Gerashchenko M.V, Kulakovskiy IV, Dmitriev S.E, Gladyshev VN. Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15581-15590. doi: 10.1073/pnas.2001788117. Epub 2020 Jun 23. PMID: 32576685; PMCID: PMC7354943.
29. Debès, C., Papadakis, A., Grönke, S.et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023). https://doi.org/10.1038/s41586-023-05922-y
30. Zhang, W., Qu, J., Liu, G. H., & Belmonte, J. C. I. (2020). The ageing epigenome and its rejuvenation. Nature Reviews Molecular Cell Biology. Nature Research. doi.org/10.1038/s41580-019-0204-5
31. Olova, N., Simpson, D. J., Marioni, R. E., & Chandra, T. (2019). Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell, 18(1). doi.org/10.1111/acel.12877.
32. Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, Lehmann S, Lemaitre JM. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 1;25(21):2248-53.
Doi: 10.1101/gad.173922.111.
33. Voutetakis K, Chatziioannou A, Gonos ES, Trougakos IP. (2015). Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. Oxid Med Cell Longev. 2015:732914. Doi: 10.1155/2015/732914.
34. Van Deursen JM. (2014). The role of senescent cells in ageing. Nature. 22;509(7501):439-46. Doi: 10.1038/nature13193.
35. Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. (2017). Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 10:718-735. Doi: 10.1038/nrd.2017.116.
36. Mylonas A and O'Loghlen A. (2022). Cellular Senescence and Ageing: Mechanisms and Interventions. Front Aging. 3:866718. doi: 10.3389/fragi.2022.866718.
37. Huang, W., Hickson, L.J., Eirin, A. et al. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 18, 611–627 (2022). https://doi.org/10.1038/s41581-022-00601-z
38. Panwar, V., Singh, A., Bhatt, M. et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Sig Transduct Target Ther 8,375 (2023). https://doi.org/10.1038/s41392-023-01608-z
39. Reinhardt HC and Schumacher B. (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 3:128-36.
Doi: 10.1016/j.tig.2011.12.002.