The Redox Stress Test: A novel technique reveals oxidative stress in Parkinson’s disease

Main Article Content

Albert F Wright, PhD

Abstract

A novel Redox Stress Test has been developed to identify symptoms of diseases associated with oxidative stress by observing symptom changes induced by short-term activation of the transcription factor Nrf2, to restore redox homeostasis. The Nrf2 pathway is triggered by a herbal preparation, Broccoli Seed Tea, developed to deliver a therapeutic dose of highly bioavailable sulforaphane, a potent activator of Nrf2. We discuss the rationale behind the tea and describe the methods used to optimise the bioavailability of sulforaphane to match the pharmacodynamics of Nrf2 activation. When consumed by people with Parkinson’s disease, the Redox Stress Test induced powerful and concurrent attenuation of a diverse group of Parkinson’s non-motor symptoms, including fatigue, constipation and urinary urgency. Motor symptoms were strictly unaffected. This observation indicates that oxidative stress may be a common factor contributing to non-motor symptoms involving sites in the CNS and peripheral organs. We tentatively interpret the results in terms of a hypothetical model for Parkinson’s Syndrome which we describe as a multisystem redox disorder with reservoirs of the disease in peripheral organs as well as in the brain. Eliminating the disease in peripheral organs is therefore a prerequisite to stopping disease progression in the brain. According to this model, the redox disorder in the brain provokes progressive neurological damage, which is not recognised as such in the early years. More specific neurological symptoms only come to light many years later, when damage to dopaminergic neurons creates a dopamine deficiency which eventually exceeds the threshold required for normal motor control, generating a new coherent group of neurological symptoms which define movement disorder. Given the apparent ease with which oxidative stress can be quenched in several locations simultaneously, we briefly discuss possible implications for public health, medical research, patients and patient advocacy groups. We note that the Redox Stress Test may have the potential to explore symptoms of other diseases where oxidative stress is believed to play a major role, although this remains subject to validation by further research.

Article Details

How to Cite
WRIGHT, Albert F. The Redox Stress Test: A novel technique reveals oxidative stress in Parkinson’s disease. Medical Research Archives, [S.l.], v. 12, n. 1, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4955>. Date accessed: 16 may 2024. doi: https://doi.org/10.18103/mra.v12i1.4955.
Section
Research Articles

References

1. Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). International Journal of Molecular Medicine. 2018;41(4):1817-1825. doi:10.3892/ijmm.2018.3406
2. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490-503. doi:10.1016/j.redox.2018.01.008
3. Dias V, Junn E, Mouradian MM. The Role of Oxidative Stress in Parkinson’s Disease. Journal of Parkinson’s Disease. 2013;3(4):461-491. doi:10.3233/JPD-130230
4. Zhou C, Huang Y, Przedborski S. Oxidative Stress in Parkinson’s Disease. Annals of the New York Academy of Sciences. 2008;1147(1):93-104. doi:https://doi.org/10.1196/annals.1427.023
5. Wright AF. A pilot study of a broccoli-seed tea by eight Parkinson’s disease patients. Published online 2021. doi:10.13140/RG.2.2.12812.03207/2
6. Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Research Reviews. 2020;57:100982. doi:10.1016/j.arr.2019.100982
7. Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radical Biology and Medicine. 2019;134:702-707. doi:10.1016/j.freeradbiomed.2019.01.016
8. Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants. 2022;11(12):2345. doi:10.3390/antiox11122345
9. Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson’s Disease. Front Neurol. 2018;9. doi:10.3389/fneur.2018.00455
10. Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the Multiple Role of Mitochondria in Parkinson’s Disease and Related Disorders: Lesson From Genetics and Protein–Interaction Network. Front Cell Dev Biol. 2021;0. doi:10.3389/fcell.2021.636506
11. Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS. Pesticides and Parkinson’s disease--is there a link? Environ Health Perspect. 2006;114(2):156-164. doi:10.1289/ehp.8095
12. Cao F, Souders Ii CL, Perez-Rodriguez V, Martyniuk CJ. Elucidating Conserved Transcriptional Networks Underlying Pesticide Exposure and Parkinson’s Disease: A Focus on Chemicals of Epidemiological Relevance. Front Genet. 2018;9:701. doi:10.3389/fgene.2018.00701
13. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00124
14. Baek J, Lee MG. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 21(4):164-169. doi:10.1179/1351000215Y.0000000015
15. Keeney PM, Xie J, Capaldi RA, Bennett JP. Parkinson’s Disease Brain Mitochondrial Complex I Has Oxidatively Damaged Subunits and Is Functionally Impaired and Misassembled. J Neurosci. 2006;26(19):5256-5264. doi:10.1523/JNEUROSCI.0984-06.2006
16. Ciccone S, Maiani E, Bellusci G, Diederich M, Gonfloni S. Parkinson’s Disease: A Complex Interplay of Mitochondrial DNA Alterations and Oxidative Stress. International Journal of Molecular Sciences. 2013;14(2):2388-2409. doi:10.3390/ijms14022388
17. Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Progress in Neurobiology. 2019;177:73-93. doi:10.1016/j.pneurobio.2018.09.003
18. Hauser D, Hastings T. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic Parkinsonism. Neurobiology of disease. 2012;51. doi:10.1016/j.nbd.2012.10.011
19. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709. doi:10.1038/s41573-021-00233-1
20. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Experimental & Molecular Medicine. 2019;51(12):1-13. doi:10.1038/s12276-019-0355-7
21. Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiological Genomics. 2018;50(2):77-97. doi:10.1152/physiolgenomics.00041.2017
22. Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. doi:10.1111/acel.13261
23. Ooi BK, Chan KG, Goh BH, Yap WH. The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches. Frontiers in Pharmacology. 2018;9. Accessed September 29, 2023. https://www.frontiersin.org/articles/10.3389/fphar.2018.01308
24. Frazzitta G, Ferrazzoli D, Folini A, Palamara G, Maestri R. Severe Constipation in Parkinson’s Disease and in Parkinsonisms: Prevalence and Affecting Factors. Frontiers in Neurology. 2019;10. https://www.frontiersin.org/articles/10.3389/fneur.2019.00621
25. Han MN, Finkelstein DI, McQuade RM, Diwakarla S. Gastrointestinal Dysfunction in Parkinson’s Disease: Current and Potential Therapeutics. J Pers Med. 2022;12(2):144. doi:10.3390/jpm12020144
26. Borghammer P, Horsager J, Andersen K, et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiology of Disease. 2021;161:105557. doi:10.1016/j.nbd.2021.105557
27. Wen Z, Liu W, Li X, et al. A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function. Oxid Med Cell Longev. 2019;2019:1759149. doi:10.1155/2019/1759149
28. O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson’s Disease. J Parkinsons Dis. 12(6):1841-1861. doi:10.3233/JPD-223262
29. Natale G, Ryskalin L, Morucci G, Lazzeri G, Frati A, Fornai F. The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease. Life. 2021;11(8):732. doi:10.3390/life11080732
30. Yao L, Liang W, Chen J, Wang Q, Huang X. Constipation in Parkinson’s Disease: A Systematic Review and Meta-Analysis. European Neurology. 2023;86(1):34-44. doi:10.1159/000527513
31. Nguyen TT, Baumann P, Tüscher O, Schick S, Endres K. The Aging Enteric Nervous System. International Journal of Molecular Sciences. 2023;24(11). doi:10.3390/ijms24119471
32. de Rijk MM, Wolf-Johnston A, Kullmann AF, et al. Aging-Associated Changes in Oxidative Stress Negatively Impacts the Urinary Bladder Urothelium. Int Neurourol J. 2022;26(2):111-118. doi:10.5213/inj.2142224.112
33. Gremke N, Griewing S, Printz M, Kostev K, Wagner U, Kalder M. Association between Parkinson’s Disease Medication and the Risk of Lower Urinary Tract Infection (LUTI): A Retrospective Cohort Study. Journal of Clinical Medicine. 2022;11(23):7077. doi:10.3390/jcm11237077
34. Wu YH, Chueh KS, Chuang SM, Long CY, Lu JH, Juan YS. Bladder Hyperactivity Induced by Oxidative Stress and Bladder Ischemia: A Review of Treatment Strategies with Antioxidants. International Journal of Molecular Sciences. 2021;22(11):6014. doi:10.3390/ijms22116014
35. Andersson KE. Oxidative Stress and Its Relation to Lower Urinary Tract Symptoms. Int Neurourol J. 2022;26(4):261-267. doi:10.5213/inj.2244190.095
36. Xu Z, Elrashidy RA, Li B, Liu G. Oxidative Stress: A Putative Link Between Lower Urinary Tract Symptoms and Aging and Major Chronic Diseases. Frontiers in Medicine. 2022;9. https://www.frontiersin.org/articles/10.3389/fmed.2022.812967
37. Valentino F, Bartolotta TV, Cosentino G, et al. Urological dysfunctions in patients with Parkinson’s disease: clues from clinical and non-invasive urological assessment. BMC Neurology. 2018;18(1):148. doi:10.1186/s12883-018-1151-z
38. Galiniak S, Mołoń M, Biesiadecki M, Bożek A, Rachel M. The Role of Oxidative Stress in Atopic Dermatitis and Chronic Urticaria. Antioxidants. 2022;11(8):1590. doi:10.3390/antiox11081590
39. Hiebert P, Werner S. Regulation of Wound Healing by the NRF2 Transcription Factor—More Than Cytoprotection. International Journal of Molecular Sciences. 2019;20:3856. doi:10.3390/ijms20163856
40. Bento‐Pereira C, Dinkova‐Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Medicinal Research Reviews. 2021;41(2):785-802. doi:https://doi.org/10.1002/med.21714
41. Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci. 2010;2:34. doi:10.3389/fnagi.2010.00034
42. Di Giacomo M, Zara V, Bergamo P, Ferramosca A. Crosstalk between mitochondrial metabolism and oxidoreductive homeostasis: a new perspective for understanding the effects of bioactive dietary compounds. Nutr Res Rev. 2020;33(1):90-101. doi:10.1017/S0954422419000210
43. Jiang X, Jin T, Zhang H, et al. Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson’s Disease. Oxidative Medicine and Cellular Longevity. 2019;2019:e4578462. doi:10.1155/2019/4578462
44. Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. JPD. 2021;11(1):45-60. doi:10.3233/JPD-201981
45. Esteras N, Dinkova-Kostova AT, Abramov AY. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biological Chemistry. 2016;397(5):383-400. doi:10.1515/hsz-2015-0295
46. Parker WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research. 2008;1189:215-218. doi:10.1016/j.brainres.2007.10.061
47. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. A Mitocentric View of Parkinson’s Disease. Annu Rev Neurosci. 2014;37:137-159. doi:10.1146/annurev-neuro-071013-014317
48. Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegener-ation and Neuroinflammation in Parkinson’s Disease: a Self-Sustained Loop. Curr Neurol Neurosci Rep. 2022;22(8):427-440. doi:10.1007/s11910-022-01207-5
49. Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2. Trends in Pharmacological Sciences. 2023;44(3): 137-149. doi:10.1016/j.tips.2022.12.003
50. Gureev A, Khorolskaya V, Sadovnikova I, et al. Age-Related Decline in Nrf2/ARE Signaling Is Associated with the Mitochondrial DNA Damage and Cognitive Impairments. International Journal of Molecular Sciences. 2022;23:15197. doi:10.3390/ijms232315197
51. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radical Biology and Medicine. 2015;88:179-188. doi:10.1016/j.freeradbiomed.2015.04.036
52. Dinkova‐Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases. The FEBS Journal. 2018;285(19):3576-3590. doi:https://doi.org/10.1111/febs.14379
53. Vomund S, Schäfer A, Parnham MJ, Brüne B, Von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. International Journal of Molecular Sciences. 2017;18(12):2772. doi:10.3390/ijms18122772
54. Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Journal of Biological Chemistry. 2017;292:jbc.R117.800169. doi:10.1074/jbc.R117.800169
55. Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Molecules and Cells. 2023;46(3):133-141. doi:10.14348/molcells.2023.0028
56. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends in Food Science & Technology. 2017;69:257-269. doi:10.1016/j.tifs.2017.02.002
57. Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biology. 2020;10(6):200105. doi:10.1098/rsob.200105
58. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews. 2018;98(3):1169-1203. doi:10.1152/physrev.00023.2017
59. Dayalan Naidu S, Muramatsu A, Saito R, et al. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci Rep. 2018;8(1):8037. doi:10.1038/s41598-018-26269-9
60. Li W, Yu S, Liu T, et al. Heterodimerization with Small Maf Proteins Enhances Nuclear Retention of Nrf2 via Masking the NESzip Motif. Biochim Biophys Acta. 2008;1783(10):1847-1856. doi:10.1016/j.bbamcr.2008.05.024
61. Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295-317. doi:10.1038/s41573-018-0008-x
62. Hu C, Eggler AL, Mesecar AD, van Breemen RB. Modification of Keap1 Cysteine Residues by Sulforaphane. Chem Res Toxicol. 2011;24(4):515-521. doi:10.1021/tx100389r
63. Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1–Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. ImmunoHorizons. 2023;7(4):288-298. doi:10.4049/immunohorizons.2200061
64. Liu S, Pi J, Zhang Q. Mathematical modeling reveals quantitative properties of KEAP1-NRF2 signaling. Redox Biology. 2021;47:102139. doi:10.1016/j.redox.2021.102139
65. Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: an update on Keap1. Free Radic Biol Med. 2020;157:63-74. doi:10.1016/j.freeradbiomed.2020.03.023
66. Iso T, Suzuki T, Baird L, Yamamoto M. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Mol Cell Biol. 2016;36(24):3100-3112. doi:10.1128/MCB.00389-16
67. Bennett RN, Mellon FA, Kroon PA. Screening Crucifer Seeds as Sources of Specific Intact Glucosinolates Using Ion-Pair High-Performance Liquid Chromatography Negative Ion Electrospray Mass Spectrometry. J Agric Food Chem. 2004;52(3):428-438. doi:10.1021/jf030530p
68. West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW. Glucoraphanin and 4-Hydroxyglucobrassicin Contents in Seeds of 59 Cultivars of Broccoli, Raab, Kohlrabi, Radish, Cauliflower, Brussels Sprouts, Kale, and Cabbage. J Agric Food Chem. 2004;52(4):916-926. doi:10.1021/jf0307189
69. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules. 2019;24(19):3593. doi:10.3390/molecules24193593
70. Fahey JW, Kensler TW. The Challenges of Designing and Implementing Clinical Trials With Broccoli Sprouts… and Turning Evidence Into Public Health Action. Front Nutr. 2021;8:648788. doi:10.3389/fnut.2021.648788
71. Fahey JW, Wade KL, Stephenson KK, et al. Bioavailability of Sulforaphane Following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration. Nutrients. 2019;11(7):1489. doi:10.3390/nu11071489
72. Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase. PLoS One. 2015;10(11):e0140963. doi:10.1371/journal.pone.0140963
73. Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci Rep. 2017;7:40807. doi:10.1038/srep40807
74. Lechtenberg M, Böhme G, Hensel A. Glucoraphanin in Keimsaaten. Zeitschrift für Phytotherapie. 2023;44(06):257-267. doi:10.1055/a-2179-8902
75. Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273-1281. doi:10.1016/j.phytochem.2004.04.013
76. GÖKÇAL E, GÜR VE, SELVİTOP R, BABACAN YILDIZ G, ASİL T. Motor and Non-Motor Symptoms in Parkinson’s Disease: Effects on Quality of Life. Noro Psikiyatr Ars. 2017;54(2):143-148. doi:10.5152/npa.2016.12758
77. Todorova A, Jenner P, Chaudhuri KR. Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Practical Neurology. 2014;14(5):310-322. doi:10.1136/practneurol-2013-000741
78. Katerji M, Filippova M, Duerksen-Hughes P. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxidative Medicine and Cellular Longevity. 2019;2019:e1279250. doi:10.1155/2019/1279250
79. Tresse E, Marturia-Navarro J, Sew WQG, et al. Mitochondrial DNA damage triggers spread of Parkinson’s disease-like pathology. Mol Psychiatry. Published online October 2, 2023:1-13. doi:10.1038/s41380-023-02251-4
80. Lu QB, Zhu ZF, Zhang HP, Luo WF. Lewy pathological study on α-synuclein in gastrointestinal tissues of prodromal Parkinson’s disease. European review for medical and pharmacological sciences. 2017;21:1514-1521.
81. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Annals of Neurology. 2016;79(6):940-949. doi:10.1002/ana.24648
82. Moussa M, Papatsoris A, Chakra MA, Fares Y, Dellis A. Lower urinary tract dysfunction in common neurological diseases. Turk J Urol. 2020;46(Suppl 1):S70-S78. doi:10.5152/tud.2020.20092
83. Natale G, Pasquali L, Paparelli A, Fornai F. Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol Motil. 2011;23(12):1056-1065. doi:10.1111/j.1365-2982.2011.01794.x
84. Anderson G, Noorian AR, Taylor G, et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol. 2007;207(1):4-12. doi:10.1016/j.expneurol.2007.05.010
85. Levings DC, Pathak SS, Yang YM, Slattery M. Limited expression of Nrf2 in neurons across the central nervous system. Redox Biol. 2023;65: 102830. doi:10.1016/j.redox.2023.102830
86. Chiareli RA, Carvalho GA, Marques BL, et al. The Role of Astrocytes in the Neurorepair Process. Frontiers in Cell and Developmental Biology. 2021;9. Accessed July 4, 2022. https://www.frontiersin.org/articles/10.3389/fcell.2021.665795
87. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011;26(1):6-17. doi:10.1002/mds.23455
88. Miyazaki I, Asanuma M. Neuron-Astrocyte Interactions in Parkinson’s Disease. Cells. 2020;9(12):E2623. doi:10.3390/cells9122623
89. Klingelhöfer L, Reichmann H. Parkinson’s disease as a multisystem disorder. Journal of Neural Transmission. 2017;124. doi:10.1007/s00702-017-1692-0
90. Müller-Nedebock AC, Dekker MCJ, Farrer MJ, et al. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson’s disease. npj Parkinsons Dis. 2023;9(1):1-11. doi:10.1038/s41531-023-00535-8
91. Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson’s Disease: A Multisystem Disorder. Neurosci Bull. 2023;39(1):113-124. doi:10.1007/s12264-022-00934-6
92. Alexander GE. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience. 2004;6(3):259-280. doi:10.31887/DCNS.2004.6.3/galexander