Behavioral Paradigms in Rodent Models of Amyotrophic Lateral Sclerosis
Main Article Content
Abstract
Amyotrophic lateral sclerosis (ALS) remains an untreatable neurodegenerative disease without a cure or effective treatment, mainly due to elusive underlying mechanisms. ALS is primarily characterized by motor neuron dysfunction in the brain and spinal cord. However, it also exhibits non-motor symptoms such as executive, behavioral, and language dysfunction, making it challenging to establish informative disease models for relevant preclinic and clinical research. The discovery of ALS-causing genes has paved the way for the development of various animal models. Among these models, rodents have emerged as particularly valuable, demonstrating unique ALS-related behavioral defects in multiple behavioral tests. These models enable further understanding of disease mechanisms and provide sensitive and precise functional assessments for drug development. Given the intricate nature of ALS pathology, it is crucial and challenging to select appropriate behavioral tests as functional exploratory readouts, mainly due to the diverse array of ALS rodent models exhibiting distinct behavioral paradigms. Therefore, this report endeavors to present an overview of various behavioral assessments, encompassing motion ability tests, cognitive evaluations, sensory analyses, and other paradigms described in rodent models of ALS. Our goal is to summarize and compare the behavioral alterations observed in diverse rodent models of ALS with distinct gene mutations, thus providing comprehensive references and guidance for advancing pathogenic and therapeutic research in ALS.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. Jun 17 1994;264(5166):1772-5. doi:10.1126/science.8209258
3. Kafkafi N, Yekutieli D, Yarowsky P, Elmer GI. Data mining in a behavioral test detects early symptoms in a model of amyotrophic lateral sclerosis. Behav Neurosci. Aug 2008;122(4):777-87. doi:10.1037/0735-7044.122.4.777
4. Hayworth CR, Gonzalez-Lima F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. Neuroscience. Dec 15 2009;164(3):975-85. doi:10.1016/j.neuroscience.2009.08.031
5. Quarta E, Bravi R, Scambi I, Mariotti R, Minciacchi D. Increased anxiety-like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model. J Comp Neurol. Aug 1 2015;523(11):1622-38. doi:10.1002/cne.23759
6. Mukhamedyarov MA, Rizvanov AA, Safiullov ZZ, et al. Analysis of the efficiency of gene-cell therapy in transgenic mice with amyotrophic lateral sclerosis phenotype. Bull Exp Biol Med. Feb 2013;154(4):558-61. doi:10.1007/s10517-013-1999-2
7. Wooley CM, Sher RB, Kale A, Frankel WN, Cox GA, Seburn KL. Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve. Jul 2005;32(1):43-50. doi:10.1002/mus.20228
8. Hadzipasic M, Ni W, Nagy M, et al. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice. Proc Natl Acad Sci U S A. Nov 22 2016;113(47):E7600-e7609. doi:10.1073/pnas.1616832113
9. Guillot TS, Asress SA, Richardson JR, Glass JD, Miller GW. Treadmill gait analysis does not detect motor deficits in animal models of Parkinson's disease or amyotrophic lateral sclerosis. J Mot Behav. Nov 2008;40(6):568-77. doi:10.3200/jmbr.40.6.568-577
10. Hampton TG, Amende I. Treadmill gait analysis characterizes gait alterations in Parkinson's disease and amyotrophic lateral sclerosis mouse models. J Mot Behav. Jan-Feb 2010;42(1):1-4. doi:10.1080/00222890903272025
11. Mancuso R, Oliván S, Osta R, Navarro X. Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res. Aug 11 2011;1406:65-73. doi:10.1016/j.brainres.2011.06.033
12. Vergouts M, Marinangeli C, Ingelbrecht C, et al. Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease. Metab Brain Dis. Dec 2015;30(6):1369-77. doi:10.1007/s11011-015-9706-9
13. Schäfer S, Hermans E. Reassessment of motor-behavioural test analyses enables the detection of early disease-onset in a transgenic mouse model of amyotrophic lateral sclerosis. Behav Brain Res. Nov 20 2011;225(1):7-14. doi:10.1016/j.bbr.2011.06.019
14. Lepore AC, Tolmie C, O'Donnell J, et al. Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. Neurobiol Dis. Sep 2010;39(3):252-64. doi:10.1016/j.nbd.2010.03.021
15. Morrison BM, Lachey Jl Fau - Warsing LC, Warsing Lc Fau - Ting BL, et al. A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. (1090-2430 (Electronic))
16. Weydt P, Hong Sy Fau - Kliot M, Kliot M Fau - Möller T, Möller T. Assessing disease onset and progression in the SOD1 mouse model of ALS. (0959-4965 (Print))
17. Flis DJ, Dzik K, Kaczor JJ, et al. Swim Training Modulates Mouse Skeletal Muscle Energy Metabolism and Ameliorates Reduction in Grip Strength in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci. Jan 9 2019;20(2)doi:10.3390/ijms20020233
18. Zhao J, Cooper LT, Boyd AW, Bartlett PF. Decreased signalling of EphA4 improves functional performance and motor neuron survival in the SOD1(G93A) ALS mouse model. Sci Rep. Jul 30 2018;8(1):11393. doi:10.1038/s41598-018-29845-1
19. Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M. Effects of RAGE inhibition on the progression of the disease in hSOD1(G93A) ALS mice. Pharmacol Res Perspect. Aug 2020;8(4):e00636. doi:10.1002/prp2.636
20. Koza LA, Winter AN, Holsopple J, et al. Protocatechuic Acid Extends Survival, Improves Motor Function, Diminishes Gliosis, and Sustains Neuromuscular Junctions in the hSOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Nutrients. Jun 18 2020;12(6) doi:10.3390/nu12061824
21. Gross SK, Shim BS, Bartus RT, et al. Focal and dose-dependent neuroprotection in ALS mice following AAV2-neurturin delivery. Exp Neurol. Jan 2020;323:113091. doi:10.1016/j.expneurol.2019.113091
22. Cai M, Yang EJ. Hochu-Ekki-To Improves Motor Function in an Amyotrophic Lateral Sclerosis Animal Model. Nutrients. Nov 4 2019;11(11)doi:10.3390/nu11112644
23. Kim J, Kim TY, Cho KS, Kim HN, Koh JY. Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. Nov 2013;59:80-5. doi:10.1016/j.nbd.2013.07.011
24. Yoo YE, Ko CP. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. Sep 2011;231(1):147-59. doi:10.1016/j.expneurol.2011.06.003
25. Yoo YE, Ko CP. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice. PLoS One. 2012;7(5):e37258. doi:10.1371/journal.pone.0037258
26. Naor S, Keren Z, Bronshtein T, Goren E, Machluf M, Melamed D. Development of ALS-like disease in SOD-1 mice deficient of B lymphocytes. J Neurol. Aug 2009;256(8):1228-35. doi:10.1007/s00415-009-5097-3
27. Gill A, Kidd J, Vieira F, Thompson K, Perrin S. No benefit from chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using a standard mouse model of familial ALS. PLoS One. Aug 3 2009;4(8):e6489. doi:10.1371/journal.pone.0006489
28. Zeldich E, Chen CD, Boden E, et al. Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1(G93A)) Mouse Model of ALS. J Mol Neurosci. Oct 2019;69(2):264-285. doi:10.1007/s12031-019-01356-2
29. Chew J, Gendron TF, Prudencio M, et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. Jun 5 2015;348(6239):1151-4. doi:10.1126/science.aaa9344
30. Hatanaka Y, Umeda T, Shigemori K, Takeuchi T, Nagai Y, Tomiyama T. C9orf72 Hexanucleotide Repeat Expansion-Related Neuropathology Is Attenuated by Nasal Rifampicin in Mice. Biomedicines. May 6 2022;10(5)doi:10.3390/biomedicines10051080
31. Watkins J, Ghosh A, Keerie AFA, Alix JJP, Mead RJ, Sreedharan J. Female sex mitigates motor and behavioural phenotypes in TDP-43(Q331K) knock-in mice. Sci Rep. Nov 5 2020;10(1):19220. doi:10.1038/s41598-020-76070-w
32. Xu YF, Gendron TF, Zhang YJ, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. Aug 11 2010;30(32):10851-9. doi:10.1523/jneurosci.1630-10.2010
33. Alfieri JA, Silva PR, Igaz LM. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice. Front Aging Neurosci. 2016;8:310. doi:10.3389/fnagi.2016.00310
34. Chaprov K, Rezvykh A, Funikov S, et al. A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neurosci Ther. Mar 23 2021;doi:10.1111/cns.13637
35. Meyer M, Kruse MS, Garay L, et al. Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res. Jan 15 2020;1727:146551. doi:10.1016/j.brainres.2019.146551
36. Kraeuter AK, Guest PC, Sarnyai Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol Biol. 2019;1916:99-103. doi:10.1007/978-1-4939-8994-2_9
37. Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. Feb 6 2015;(96):e52434. doi:10.3791/52434
38. Gil-Bea FJ, Aisa B Fau - Schliebs R, Schliebs R Fau - Ramírez MJ, Ramírez MJ. Increase of locomotor activity underlying the behavioral disinhibition in tg2576 mice. (0735-7044 (Print))
39. Chiu AY, Zhai P, Dal Canto MC, et al. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci. Aug 1995;6(4):349-62. doi:10.1006/mcne.1995.1027
40. Silva PR, Nieva GV, Igaz LM. Suppression of Conditional TDP-43 Transgene Expression Differentially Affects Early Cognitive and Social Phenotypes in TDP-43 Mice. Front Genet. 2019;10:369. doi:10.3389/fgene.2019.00369
41. Alfieri JA, Pino NS, Igaz LM. Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci. Nov 12 2014;34(46):15244-59. doi:10.1523/jneurosci.1918-14.2014
42. Banack SA, Cox PA. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology. Aug 12 2003;61(3):387-9. doi:10.1212/01.wnl.0000078320.18564.9f
43. Dawson R, Jr., Marschall EG, Chan KC, Millard WJ, Eppler B, Patterson TA. Neurochemical and neurobehavioral effects of neonatal administration of beta-N-methylamino-L-alanine and 3,3'-iminodipropionitrile. Neurotoxicol Teratol. Mar-Apr 1998;20(2):181-92. doi:10.1016/s0892-0362(97)00078-0
44. Karlsson O, Lindquist NG, Brittebo EB, Roman E. Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (beta-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci. Jun 2009;109(2):286-95. doi:10.1093/toxsci/kfp062
45. Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol. Oct 15 2003;192(2):95-106. doi:10.1016/s0041-008x(03)00217-5
46. Scott LL, Downing TG. Β-N-Methylamino-L-Alanine (BMAA) Toxicity Is Gender and Exposure-Age Dependent in Rats. Toxins (Basel). Dec 27 2017;10(1)doi:10.3390/toxins10010016
47. Inan SY, Soner BC, Sahin AS. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats. Prog Neuropsychopharmacol Biol Psychiatry. Mar 3 2015;57:36-43. doi:10.1016/j.pnpbp.2014.10.008
48. Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol (1985). Jun 2000;88(6):2045-53. doi:10.1152/jappl.2000.88.6.2045
49. Ren P, Tang S, Fang F, et al. Gait Rhythm Fluctuation Analysis for Neurodegenerative Diseases by Empirical Mode Decomposition. IEEE Trans Biomed Eng. Jan 2017;64(1):52-60. doi:10.1109/tbme.2016.2536438
50. Liao F, Wang J, He P. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Med Eng Phys. Apr 2008;30(3):299-310. doi:10.1016/j.medengphy.2007.04.014
51. Feron M, Couillandre A, Mseddi E, et al. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol. Sep 2018;265(9):2125-2136. doi:10.1007/s00415-018-8964-y
52. Nam Nguyen QD, Liu AB, Lin CW. Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers. Entropy (Basel). Nov 25 2020;22(12)doi:10.3390/e22121340
53. Rostosky CM, Milosevic I. Gait Analysis of Age-dependent Motor Impairments in Mice with Neurodegeneration. J Vis Exp. Jun 18 2018;(136)doi:10.3791/57752
54. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A. Nov 3 2009;106(44):18809-14. doi:10.1073/pnas.0908767106
55. Clarke KA, Still J. Gait analysis in the mouse. Physiol Behav. Jul 1999;66(5):723-9. doi:10.1016/s0031-9384(98)00343-6
56. Hadzipasic M, Tahvildari B, Nagy M, Bian M, Horwich AL, McCormick DA. Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS. Proc Natl Acad Sci U S A. Nov 25 2014;111(47):16883-8. doi:10.1073/pnas.1419497111
57. Veldink JH, Bär PR, Joosten EA, Otten M, Wokke JH, van den Berg LH. Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord. Nov 2003;13(9):737-43. doi:10.1016/s0960-8966(03)00104-4
58. Joyce PI, McGoldrick P, Saccon RA, et al. A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Hum Mol Genet. Apr 1 2015;24(7):1883-97. doi:10.1093/hmg/ddu605
59. Lee JD, Heshmat S, Heggie S, Thorpe KA, McCombe PA, Henderson RD. Clinical and electrophysiological examination of pinch strength in patients with amyotrophic lateral sclerosis. Muscle Nerve. Jan 2021;63(1):108-113. doi:10.1002/mus.27111
60. Andres PL, Thibodeau LM, Finison LJ, Munsat TL. Quantitative assessment of neuromuscular deficit in ALS. Neurol Clin. Feb 1987;5(1):125-41.
61. Alanazy MH, Hegedus J, White C, Korngut L. Decremental responses in patients with motor neuron disease. Brain Behav. Nov 2017;7(11):e00846. doi:10.1002/brb3.846
62. Lepore AC, Tolmie C Fau - O'Donnell J, O'Donnell J Fau - Wright MC, et al. Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. (1095-953X (Electronic))
63. Hayworth CR, Gonzalez-Lima F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. (1873-7544 (Electronic))
64. Shinagawa S, Ikeda M, Fukuhara R, Tanabe H. Initial symptoms in frontotemporal dementia and semantic dementia compared with Alzheimer's disease. Dement Geriatr Cogn Disord. 2006;21(2):74-80. doi:10.1159/000090139
65. Menuet C, Cazals Y, Gestreau C, et al. Age-related impairment of ultrasonic vocalization in Tau.P301L mice: possible implication for progressive language disorders. PLoS One. 2011;6(10):e25770. doi:10.1371/journal.pone.0025770
66. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. Nov 2014;10(11):661-70. doi:10.1038/nrneurol.2014.184
67. Vaughan SK, Kemp Z, Hatzipetros T, Vieira F, Valdez G. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations. J Comp Neurol. Dec 1 2015;523(17):2477-94. doi:10.1002/cne.23848
68. Guo YS, Wu DX, Wu HR, et al. Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Exp Mol Med. Mar 31 2009;41(3):140-50. doi:10.3858/emm.2009.41.3.017
69. Jamal GA, Weir AI, Hansen S, Ballantyne JP. Sensory involvement in motor neuron disease: further evidence from automated thermal threshold determination. J Neurol Neurosurg Psychiatry. Sep 1985;48(9):906-10. doi:10.1136/jnnp.48.9.906
70. Pugdahl K, Fuglsang-Frederiksen A, de Carvalho M, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. Jul 2007;78(7):746-9. doi:10.1136/jnnp.2006.098533
71. Gregory R, Mills K, Donaghy M. Progressive sensory nerve dysfunction in amyotrophic lateral sclerosis: a prospective clinical and neurophysiological study. J Neurol. May 1993;240(5):309-14. doi:10.1007/bf00838169
72. Tao QQ, Wei Q, Wu ZY. Sensory nerve disturbance in amyotrophic lateral sclerosis. Life Sci. Jun 15 2018;203:242-245. doi:10.1016/j.lfs.2018.04.052
73. Hatzipetros T, Kidd JD, Moreno AJ, Thompson K, Gill A, Vieira FG. A Quick Phenotypic Neurological Scoring System for Evaluating Disease Progression in the SOD1-G93A Mouse Model of ALS. J Vis Exp. Oct 6 2015;(104)doi:10.3791/532