Physiological Function of Oligosaccharides in Teleost Blood

Main Article Content

Takahiko Aoki


Oligosaccharides in human blood are involved in various blood group antigens. Sialo-oligosaccharide-rich glycoproteins (GPs) in red blood cell (RBC) membranes also carry M, N, Ss and other blood group antigens. However, teleost blood is not expressed as a blood group antigen. Our study showed that carp, yellow tail and red sea bream GPs exhibit broad-spectrum antibiotic activity. This bacteriostatic activity is caused by the sialo-oligosaccharides from GPs.

Based on NMR and GC–MS results, the structure of the bacteriostatic sialo-oligosaccharide from carp GP was determined to be NeuGcα2→6(Fucα1→4) (Glcα1→3) Galβ1→4GalNAc-ol. Compared to carp pentose, the structure of human GP O-linked tetra- or tri-oligosaccharides is simpler. In addition, NeuAc is simpler in human GPs than in carp NeuGc.

In contrast to human blood, teleost blood does not contain IgG, and other antibodies occur at low levels. Teleost GPs may act as substitutes for antibodies, such as IgG, in the immune system. In this review, the transformation of the physiological function of oligosaccharides with respect to their structure is described.

Keywords: teleost, red blood cell membranes, glycophorin, antibiotic activity, blood group antigen, immune system

Article Details

How to Cite
AOKI, Takahiko. Physiological Function of Oligosaccharides in Teleost Blood. Medical Research Archives, [S.l.], v. 12, n. 1, jan. 2024. ISSN 2375-1924. Available at: <>. Date accessed: 03 mar. 2024. doi:
Research Articles


1. Anstee DJ. Blood group-active surface molecules of the human red blood cell. Vox Sang. 1990;58:1–20.
2. Prohaska R, Koerner TAW Jr., Armitage IM, Furthmayr H. Chemical and carbon-13 nuclear magnetic resonance studies of the blood group M and N active sialoglycopeptides from human glycophorin A. J. Biol. Chem. 1981;256:5781–5791.
3. Dahr W, Beyreuther K, Steinbach H, Gielen W, Krüger J. Structure of the Ss blood group antigens, II. A methionine/threonine polymorphism within the N-terminal sequence of the Ss glycoprotein. Hoppe-Seyler Z. Physiol. Chem. 1980;361:895–906.
4. Suzuki A. Blood type of fish. Bull. Jpn. Soc. Sci. Fish. 1967;33:372-381.
5. Marchesi VT, Andrews EP. Glycoproteins: Isolation from cell membranes with lithium diiodosalicylate. Science. 1971;174:1247-1248.
6. Aoki T, Chimura K, Nakao N, Mizuno Y. Isolation and characterization of glycophorin from carp red blood cell membranes. Membranes. 2014;4:491-508.
7. Morgan WTJ, Watkins WM. Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj. J. 2000;17:501-530.
8. Misevic G. ABO blood group system. Asia Pacific J. Blood Types Genes 2018;2:71-84.
9. Grodecka M, Bertrand O, Karolak E, Lisowski M, Waśniowska K. One-step immunopurification and lectinochemical characterization of the Duffy atypical chemokine receptor from human erythrocytes. Glycoconj. J. 2012;29:93–105.
10. Daniels G, Khalid G. Identification, by immunoblotting, of the structures carrying Lutheran and para-Lutheran blood group antigens. Vox Sang. 1989;57:137–141.
11. Jaber A, Blanchard D, Goossens D, Bloy C, Lambin P, Rouger P, Salmon C, Cartron J-P. Characterization of the blood group Kell (K1) antigen with a human monoclonal antibody. Blood. 1989;73:1597–1602.
12. Aoki T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes. 2017;7:56-74
13. Aoki T. Preparation and structural analysis of a sialo-oligosaccharide from glycophorin in carp red blood cell (RBC) membranes. Med. Res. Arch. 2023;11. doi:10.18103/mra.v11i3.3644.
14. Alexander JB, Ingram GA. Noncellular nonspecific defence mechanisms of Fish. Annual Rev. of Fish Diseases. 1992;2:249-279.
15. Takeda T. Effects of Blood sampling on the hematocrit value in the carp and trials of blood transfusion for prevention of anemia. Sci. Bull. Fac. Agr., Kyushu Univ. 1985;39:153-157.
16. Aoki T, Chimura K, Nakao N, Mizuno Y. Isolation and characterization of glycophorin from carp red blood cell membranes. Membranes. 2014;4:491-508.
17. Aoki T, Inoue T. Glycophorin in red blood cell membranes of healthy and
diseased carp, Cyprinus carpio L. Journal of Fish Diseases. 2011;34:573-576.
18. Aoki T, Chimura K, Sugiura H, Mizuno Y. Structure of a sialo-oligosaccharide from glycophorin in carp red blood cell membranes. Membranes. 2014;4:764-777.
19. Aoki T. Determination of the bacteriostatic activity of glycophorin preparations from red blood cell (RBC) membranes of yellow tail and red sea bream. Medical Research Archives. 2021;9. doi: 10.18103/mra.v9i12.2613.
20. Bag MR, Rajendran MKV, Mukherjee SC. Characterization of IgM of Indian major carps and ther cross-reactivity with anti-fish IgM antibodies. Fish Shellfish Immunol. 2009;26:275-278.
21. Wilson M, Bengtén E, Miller NW, Clem LW, Du Pasquier L, Warr GW. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc. Natl. Acad. Sci. USA. 1997;94:4593-4597.
22. Magnadóttir B. Comparison of immunoglobulin (IgM) from four fish species. ICEL. AGR. SCI. 1998;12:47-59.
23. Solem ST, Stenvik J. Antibody repertoire development in teleosts-a review with emphasis on salmonids and Gadus morhua L. Dev. Comp. Immunol. 2006;30:57-76.
24. Mochida K, Lou Y-H, Hara A, Yamauch K. Physical biochemical properties of IgM from a teleost fish. Immunology 1994;83:675-680.
25. Voss EW, Sigel MM. Valence and temporal change in affinity of purified 7S and 18S nurse shark anti-2,4-dinitrophenyl antibodies. J. Immunol. 1972;109:665-673.
26. Tian J, Sun B, Luo Y , Zhang Y, Nie P. Distribution of IgM, IgD and IgZ in mandarin fish, Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation. Aquaculture. 2009;288:14-21.
27. Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. Eur. J. Immunol. 2018;48:1101-1113.
28. Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal immunity and vaccination in teleost fish. Frontiers in Immunology 2020;doi:10.3389/fimmu.2020.567941.
29. Aoki T. Behaviour of a sialo-oligosaccharide from glycophorin in teleost red blood cell membranes. In Animal models and experimental research in medicine, 2022; doi:10.5772/ intechopen.107234.
30. Ouchterlony Ö. Antigen-antibody reactions in gels: IV. types of reactions in coordinated systems of diffusion. Acta Path. Micr. Scand. 1953;32:231-240.
31. Riggs A. Preparation of blood hemoglobins of vertebrates. In Methods Enzymol. – 76 (Antonini E, Rossi-Bernardi L & Chiancone E eds), 1981 (pp. 5-29). Academic Press, USA.