A novel approach to assess human neurovirulence and neurotoxicity-related concerns in vaccine development

Main Article Content

Vasanthi Dasari Paparao Bolimera Swati Shukla Rahul Ganar Timothy Elwell Subhadra Dravida


Pre-clinical assessment of vaccines for neurotoxicity and neurovirulence is mandatory for safe human administration especially for vaccines developed to target neurotropic viruses. Several recent studies suggest that some vaccine candidates, for example yellow fever vaccine tested to be neuroattenuated in monkeys were later found to be neurovirulent in vaccinated population. In this study, we used a stem cell composed human microphysiological system configuration as an in vitro platform and infected them with four strains of DENV (Dengue Virus) followed by capturing the micrographs that were analyzed by AI/ML enabled software to generate neurovirulence score. Additionally, the host gene expression studies done with infected microphysiological system resulted in establishing the signatures specific to the host system against viral strains. Varying degrees of neurovirulence risk scores were recorded by the prediction model. Our approach is the first of its kind, showcasing the use of a healthy human Microphysiological System complemented with digital tools to generate neurovirulent gene signatures represented by HLA-B, C1QB, TIMP4, CD63 and RANTES, which may play a role in host protection or as a result of a pathological response against DENV infection.

Keywords: neurovirulence, vaccines, artificial intelligence, machine learning, digital solutions, alternatives to animal testing, human stem cells, dengue virus

Article Details

How to Cite
DASARI, Vasanthi et al. A novel approach to assess human neurovirulence and neurotoxicity-related concerns in vaccine development. Medical Research Archives, [S.l.], v. 12, n. 1, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5010>. Date accessed: 03 mar. 2024. doi: https://doi.org/10.18103/mra.v12i1.5010.
Research Articles


1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. Feb 2021; 21(2):83-100. doi:10.1038/s41577-020-00479-7

2. Aps LRDM, Piantola MAF, Pereira SA, de Castro JT, Santos FAD, Ferreira LCD. Adverse events of vaccines and the consequences of non-vaccination: a critical review. Rev Saude Publ. 2018;52

3. Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine. Jul 14 2020;38 (33):5123-5130. doi:10.1016/j.vaccine.2020.06.026

4. Bauer L, Laksono BM, de Vrij FMS, Kushner SA, Harschnitz O, van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. May 2022;45(5):358-368.

5. Abdullahi AM, Sarmast ST, Singh R. Molecular Biology and Epidemiology of Neurotropic Viruses. Cureus. Aug 11 2020;12(8):e9674. doi:10.7759/cureus.9674

6. Geoghegan JL, Holmes EC. The phylogenomics of evolving virus virulence. Nat Rev Genet. Dec 2018;19(12):756-769. doi:10.1038/s41576-018-0055-5

7. Bauer L, Rissmann M, Benavides FFW, et al. In vitro and in vivo differences in neurovirulence between D614G, Delta And Omicron BA.1 SARS-CoV-2 variants. Acta Neuropathol Com. Sep 5 2022;10(1) doi:ARTN 12410.1186/s40478-022-01426-4

8. Furesz J, Contreras G. Some aspects of the monkey neurovirulence test used for the assessment of oral poliovirus vaccines. Dev Biol Stand. 1993;78:61-70.

9. Levenbook IS, Pelleu LJ, Elisberg BL. The monkey safety test for neurovirulence of yellow fever vaccines: the utility of quantitative clinical evaluation and histological examination. J Biol Stand. Oct 1987;15(4):305-13. doi:10.1016/s0092-1157(87)80003-3

10. Soares CN, Cabral-Castro MJ, Peralta JM, Freitas MR, Puccioni-Sohler M. Meningitis determined by oligosymptomatic dengue virus type 3 infection: report of a case. Int J Infect Dis. Feb 2010;14(2):e150-2.

11. Domingues RB, Kuster GW, Onuki-Castro FL, Souza VA, Levi JE, Pannuti CS. Involvement of the central nervous system in patients with dengue virus infection. J Neurol Sci. Apr 15 2008;267(1-2):36-40. doi:10.1016/j.jns.2007.09.040

12. Dasari V, Bolimera P, Krishna Gorthi L, Dravida S. In Vitro Profiling of Application Ready Human Surrogate Primary Progenitor Stromal Cell Fractions. Archives of Clinical and Biomedical Research. 2022;06(03) doi:10.26502/acbr.50170266

13. Maisnam D, Billoria A, Prasad VSV, Venkataramana M. Association of Dengue Virus Serotypes 1&2 with Severe Dengue Having Deletions in Their 3′Untranslated Regions (3′UTRs). Microorganisms. Mar 2023; 11(3) doi:ARTN66610.3390/microorganisms11030666

14. He S, Minn KT, Solnica-Krezel L, Anastasio MA, Li H. Deeply-supervised density regression for automatic cell counting in microscopy images. Med Image Anal. Feb 2021;68:101892. doi:10.1016/j.media.2020.101892

15. Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol. 2023;14:1276817. doi:10.3389/fimmu.2023.1276817

16. Gutierrez-Barbosa H, Castaneda NY, Castellanos JE. Differential replicative fitness of the four dengue virus serotypes circulating in Colombia in human liver Huh7 cells. Braz J Infect Dis. Jan-Feb 2020;24(1):13-24. doi:10.1016/j.bjid.2019.11.003

17. Johnston C, Jiang W, Chu T, Levine B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J Virol. Nov 2001;75(21):10431-45. doi:10.1128/JVI.75.21.10431-10445.2001

18. May Fulton C, Bailey WJ. Live Viral Vaccine Neurovirulence Screening: Current and Future Models. Vaccines (Basel). Jun 30 2021;9(7) doi:10.3390/vaccines9070710

19. LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Front Virol. 2022;2doi:10.3389/fviro.2022.869657

20. Pletnev AG, Bray M, Huggins J, Lai CJ. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A. Nov 1 1992;89(21):10532-6. doi:10.1073/pnas.89.21.10532

21. Vasanthi Dasari, Papa Rao Bolimera, Sivarama Krishna Dokku, Leela Krishna Gorti, Dravida S. Neurotoxins Induced Toxicogenomic Patterns on Human Induced Pluripotent Stem Cell based Microphysiological System. Medical Research Archives. 2022;10(10)doi:10.18103/mra.v10i10.3202

22. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B. Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol. Jan 1999;73(1):510-8. doi:10.1128/JVI.73.1.510-518.1999

23. Kim M, Namkung Y, Hyun D, Hong SH. Prediction of Stem Cell State Using Cell Image-Based Deep Learning. Adv Intell Syst-Ger. Jul 2023;5(7) doi:10.1002/aisy.202300017

24. Marzec-Schmidt K, Ghosheh N, Stahlschmidt SR, Küppers-Munther B, Synnergren J, Ulfenborg B. Artificial Intelligence Supports Automated Characterization of Differentiated Human Pluripotent Stem Cells. Stem Cells. Jun 26 2023;doi:10.1093/stmcls/sxad049

25. Weinberg RP, Koledova VV, Schneider K, et al. Palm Fruit Bioactives modulate human astrocyte activity in vitro altering the cytokine secretome reducing levels of TNFalpha, RANTES and IP-10. Sci Rep. Nov 6 2018;8(1):16423. doi:10.1038/s41598-018-34763-3

26. Liu H, Chao D, Nakayama EE, et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci U S A. Apr 13 1999;96(8):4581-5. doi:10.1073/pnas.96.8.4581

27. Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. Jun 2009;9(6):429-39. doi:10.1038/nri2565

28. Goping IS, Barry M, Liston P, et al. Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity. Mar 2003;18(3):355-65. doi:10.1016/s1074-7613(03)00032-3

29. Hu M, Jana S, Kilic T, et al. Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels. Arterioscler Thromb Vasc Biol. Jun 2021;41(6):1874-1889. doi:10.1161/ATVBAHA.120.315522

30. Marulanda J, Murshed M. Role of Matrix Gla protein in midface development: Recent advances. Oral Dis. Mar 2018;24(1-2):78-83. doi:10.1111/odi.12758

31. Melendez-Zajgla J, Del Pozo L, Ceballos G, Maldonado V. Tissue inhibitor of metalloproteinases-4. The road less traveled. Mol Cancer. Nov 21 2008;7:85. doi:10.1186/1476-4598-7-85

32. Liu J, Wu Q, Shi J, et al. LILRB4, from the immune system to the disease target. Am J Transl Res. 2020;12(7):3149-3166.

33. Simons M. An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda). Aug 2012;27(4):213-22. doi:10.1152/physiol.00016.2012

Most read articles by the same author(s)