Aetiological Diagnosis of children with False Diagnosis of Arthrogryposis Multiplex Congenita

Main Article Content

Ali Al Kaissi Sergey Ryabykh Hamza Al Kaissi Vasileios Dougales Vladimir Kenis Susanne Gerit Kircher Franz Grill

Abstract

Background: Arthrogryposis multiplex congenita is the usual misdiagnosis given for children born with multiple joint dislocation syndromes. The purpose of the study was to refute the term arthrogryposis multiplex congenita as well as contractures and replace them with a precise diagnostic entity.


Methods: Eight unrelated children referred to our orthopaedic departments with the presumptive misdiagnosis of arthrogryposis multiplex because of multiple joint contractures. Five boys and three girls (aged 1 month-5 year) and one adult-15-year-old-boy have been included. We performed extensive clinical and radiographic phenotypic characterization of every single patient associated with confirmatory genotype. 


Results: We accomplished the diagnoses in all these children. Three diagnostic entities emerged. Larsen syndrome, diastrophic dysplasia and Escobar syndrome. The genotype has been performed accordingly.


Conclusion: The reason for presenting this study is threefold; Firstly, to illustrate the necessity of the etiological diagnosis in children with the misdiagnosis of arthrogryposis multiplex congenita in connection with the presumptive misdiagnosis of fetal akinesia, Pena-Shokeir syndrome or congenital myopathy. Secondly, full consideration of the phenotypic characterization and the additional pathological features allowed us to achieve proper management. Thirdly, is to clarify that excessive vigorous attempts to correct the dislocations in children with skeletal dysplasia were felt to not be recommended because of the risk of damaging the dysplastic epiphyses.

Keywords: Congenital multiple contractures, Arthrogryposis Multiplex congenita, Clinical phenotype, Radiological phenotype, Genotype

Article Details

How to Cite
KAISSI, Ali Al et al. Aetiological Diagnosis of children with False Diagnosis of Arthrogryposis Multiplex Congenita. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5033>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v12i2.5033.
Section
Research Articles

References

1. Hall J. G. Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. Journal of Pediatric Orthopaedics—Part B. 1997;6(3): 159–166
2. Bamshad M, Van Heest A E, Pleasure D. Arthrogryposis. A Review and Update. J. Bone Joint Surg. Am. 2009, 91, 40–46
3. Hageman G, Willemse J, Van Ketel BA, et al. The pathogenesis of fetal hypokinesia. A neurological study of 75 cases of congenital contractures with emphasis on cerebral lesions. Neuropediatrics 1987;18:22-33
4. Adams C, Becker LE, Murphy EG. Neurogenic arthrogryposis multiplex congenita: clinical and muscle biopsy findings. Pediatr Neurosci 1988;14:97-102.
5. Rowe PW, Eagle M, Pollitt C, Bullock RE, Bushby KMD. Multicore myopathy: respiratory failure and paraspinal muscle contractures are important complications. Dev Med Child Neurol 2000;42:340-343.
6. Larsen LJ, Schottstaedt ER, Bost FC. Multiple congenital dislocations associated with characteristic facial abnormality. J Pediatr.1950; 37 :574 –581
7. Tsang MCK, Ling JYK, King NM, Chow SK. Oral and craniofacial morphology of a patient with Larsen syndrome. J Cranio Gen Dev Bio 1986;6:357-362.
8. Kozlowski K, et al. Radiographic findings in Larsen's syndrome. Australas Radiol 1974;18:336-344.
9. Krakow D, Robertson SP, King LM, Morgan T, et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nature Genet 2004;36:405-410.
10. Spranger J, Gerken H. Diastrophischer Zwergwuchs. Z Kinderheilkd 1967;98:227-234.
11. Makitie O, Kaitila I. Growth in Diastrophic dysplasia. J Pediatr 1997;130:641-647
12. Poussa M, Merikanto J, Ryoppy S, et al. The spine in diastrophic dysplasia. Spine 1991;16:881-887.
13. Hall BD. Diastrophic dysplasia: extreme variability within a sibship. Am J Med Genet 1996;63:28-33
14. Hastbacka J, Sistonen P, Kaitila I, et al. A linkage map spanning the locus for diastrophic dysplasia (DTD). Genomics 1991;11:968-973.
15. Hastbacka J, De la Chapelle A, Kaitila I, et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genetics 1992;2:204-211
16. Karniski LP. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype. Hum Mol Genet 2001;10:1485-1490.
17. Escobar V, Bixler D, Gleiser S, et al. Multiple pterygium syndrome. Am J Dis Child 1978;132:609-611.
18. Morgan NV, Brueton LA, Cox P, Greally MT, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet 2006;79:390-395.
19. Dahan-Oliel N, van Bosse H, Darsaklis VB, Rauch F, Bedard T, Bardai G, James M, Raney E, Freese K, Hyer L, Altiok H, Pellett J, Giampietro P, Hall J, Hamdy RC. Epidemiology, aetiology, interventions and genomics in children with arthrogryposis multiplex congenita: protocol for a multisite registry. BMJ Open. 2022; 28;12(10)
20. Hall JG (1997) Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 6(3):159–166
21. Beals RK (2005) The distal arthrogryposes: a new classification of peripheral contractures. Clin Orthop Relat Res 435:203–210
22. Gowda M, Mohan S, Ramesh D, Chinta N. Distal arthrogryposis type 5D in a South Indian family caused by novel deletion in ECEL1 gene. Clin Dysmorphol. 2021 1;30(2):100-103.
23. Alesi V, Sessini F, Genovese S, Calvieri G, Sallicandro E, Ciocca L, Mingoia M, Novelli A, Moi P. A New Intronic Variant in ECEL1 in Two Patients with Distal Arthrogryposis Type 5D. Int J Mol Sci. 2021. 20;22(4).
24. Jin JY, Liu DY, Jiao ZJ, Dong Y, Li J, Xiang R. The Novel Compound Heterozygous Mutations of ECEL1 Identified in a Family with Distal Arthrogryposis Type 5D. Biomed Res Int. 2020:2149342
25. Miller NH, Mims B, Child A, Milewicz DM, Sponseller P, Blanton SH. Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. Journal of Orthopaedic Research. 1996;14(6):994–999
26. Bianco AM, Ragusa G, Di Carlo V, Faletra F, Di Stazio M, Racano C, Trisolino G, Cappellani S, De Pellegrin M, d'Addetta I, Carluccio G, Monforte S, Andreacchio A, Dibello D, d'Adamo AP. What Is the Exact Contribution of PITX1 and TBX4 Genes in Clubfoot Development? An Italian Study. Genes (Basel). 2022. 27;13(11):1958
27. Toydemir RM, Rutherford A, Whitby FG, Jorde LB, Carey JC, Bamshad MJ (2006) Mutations in embryonic myosin heavy chain (MYH3) cause Freeman–Sheldon syndrome and Sheldon–Hall syndrome. Nat Genet 38(5):561–565
28. Kaissi AA, Klaushofer K, Grill F. Severe skew foot deformity in a patient with freeman-sheldon syndrome. J Clin Med Res. 2011;3(5):265-7
29. Freeman EA, Sheldon JH. Cranio-carpotarsal dystrophy: undescribed congenital malformation. Arch Dis Child 1938;13:277-283.
30. Moore CA, Weaver DD. Familial distal arthrogryposis with craniofacial abnormalities: a new subtype of type II ?. Am J Med Genet 1989;33:231-237