Anti-Inflammatory Effect of Extracts of Inonotus obliquus and Microalgae

Main Article Content

Sajeev Wagle Wasitha P.D.W. Thilakarathna Julie Anne Lee H.P. Vasantha Rupasinghe

Abstract

Chaga mushroom (Inonotus obliquus) and marine microalgae are two emerging natural products with many potential physiological health benefits. The aim of this study was to investigate the anti-inflammatory effects of two extracts prepared from Chaga mushroom and microalgae using lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell model. The Chaga mushroom extract dose-dependently reduced the production of proinflammatory biomarkers of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α). At a high concentration of 500 µg/L, Chaga mushroom extract significantly suppressed cyclooxygenase-2 levels. Similarly, the extract of microalgae suppressed the secretion of IL-6 and TNF-α by lipopolysaccharide-induced macrophages. Both extracts had no significant impact on the secretion of anti-inflammatory IL-4 production. These results suggest that extracts of Chaga mushroom and microalgae can be used in developing anti-inflammatory natural health products.

Keywords: Chaga, microalgae, inflammation, macrophage, cytokines, COX-2

Article Details

How to Cite
WAGLE, Sajeev et al. Anti-Inflammatory Effect of Extracts of Inonotus obliquus and Microalgae. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5049>. Date accessed: 09 jan. 2025. doi: https://doi.org/10.18103/mra.v12i2.5049.
Section
Research Articles

References

1. Chen L, Deng H, Cui H, et al. Inflammatory re-sponses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-7218. doi:10.18632/oncotarget.23208
2. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-1832. doi:10.1038/s41591-019-0675-0
3. Deng W, Du H, Liu D, Ma Z. Editorial: The Role of Natural Products in Chronic Inflammation. Front Pharmacol. 2022;13:901538. doi:10.3389/fphar.2022.901538
4. Liu W, Chen X, Li H, Zhang J, An J, Liu X. Anti-Inflammatory Function of Plant-Derived Bioac-tive Peptides: A Review. Foods. 2022;11(15):2361. doi:10.3390/foods11152361
5. Plehn S, Wagle S, Rupasinghe HPV. Chaga mushroom triterpenoids as adjuncts to minimally invasive cancer therapies: A review. Current Re¬search in Toxicology. 2023;5:100137. doi:10.1016/j.crtox.2023.100137
6. Géry A, Dubreule C, André V, et al. Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr Can¬cer Ther. 2018;17(3):832-843. doi:10.1177/1534735418757912
7. Ern PTY, Quan TY, Yee FS, Yin ACY. Therapeutic properties of Inonotus obliquus (Chaga mush¬room): a review. Mycology. 2023;0(0):1-18. doi:10.1080/21501203.2023.2260408
8. Alhallaf W, Perkins LB. The Anti-Inflammatory Properties of Chaga Extracts Obtained by Dif-ferent Extraction Methods against LPS-Induced RAW 264.7. Molecules. 2022;27(13):4207. doi:10.3390/molecules27134207
9. Kou RW, Han R, Gao YQ, Li D, Yin X, Gao JM. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 2021;184:112647. doi:10.1016/j.phytochem.2020.112647
10. Menaa F, Wijesinghe U, Thiripuranathar G, et al. Marine Algae-Derived Bioactive Com-pounds: A New Wave of Nanodrugs? Mar Drugs. 2021;19(9):484. doi:10.3390/md19090484
11. Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environmental Toxicology and Pharma¬cology. 2016;48:22-30. doi:10.1016/j.etap.2016.09.023
12. Biris-Dorhoi ES, Michiu D, Pop CR, et al. Macroalgae—A Sustainable Source of Chemi-cal Compounds with Biological Activities. Nutri¬ents. 2020;12(10):3085. doi:10.3390/nu12103085
13. Barsanti L, Birindelli L, Gualtieri P. Paramylon and Other Bioactive Molecules in Micro and Macroalgae. Int J Mol Sci. 2022;23(15):8301. doi:10.3390/ijms23158301
14. Vieira MV, Pastrana LM, Fuciños P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine Drugs. 2020;18(12):644. doi:10.3390/md18120644
15. Cecchin M, Berteotti S, Paltrinieri S, et al. Im-proved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by se-lection of pale green mutants. Biotechnology for Biofuels. 2020;13(1):78. doi:10.1186/s13068-020-01718-8
16. Nunes MC, Fernandes I, Vasco I, Sousa I, Ray-mundo A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioac¬tivity. Foods. 2020;9(5):579. doi:10.3390/foods9050579
17. Panahi Y, Darvishi B, Jowzi N, Beiraghdar F, Sa¬hebkar A. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties. Curr Pharm Des. 2016;22(2):164-173. doi:10.2174/1381612822666151112145226
18. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The Role of Inflammatory and Anti-Inflamma¬tory Cytokines in the Pathogenesis of Osteoar¬thritis. Mediators of Inflammation. 2014;2014:e561459. doi:10.1155/2014/561459
19. Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618
20. Monteiro M, Santos RA, Iglesias P, et al. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of se¬lected macro- and microalgae extracts. J Appl Phycol. 2020;32(1):349-362. doi:10.1007/s10811-019-01927-1
21. Wagle S, Lee JA, Rupasinghe HPV. Synergistic Cytotoxicity of Extracts of Chaga Mushroom and Microalgae against Mammalian Cancer Cells In Vitro. Oxidative Medicine and Cellular Longevity. 2024;2024:e7944378. doi:10.1155/2024/7944378
22. Facchin BM, Dos Reis GO, Vieira GN, et al. In-flammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis. Inflamm Res. 2022;71(7-8):741-758. doi:10.1007/s00011-022-01584-0
23. Park J, Ha SH, Abekura F, et al. 4-O-Carbox-ymethylascochlorin Inhibits Expression Levels of on Inflammation-Related Cytokines and Matrix Metalloproteinase-9 Through NF–κB/MAPK/TLR4 Signaling Pathway in LPS-Acti¬vated RAW264.7 Cells. Frontiers in Pharmacol¬ogy. 2019;10. Accessed February 13, 2023. https://www.fron¬ti¬er-sin.org/articles/10.3389/fphar.2019.00304
24. Salvemini D, Kim SF, Mollace V. Reciprocal reg¬ulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol. 2013;304(7):R473-R487. doi:10.1152/ajpregu.00355.2012
25. Somade OT, Oyinloye BE, Ajiboye BO, Osu-koya OA. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling path¬ways in methyl cellosolve-induced hepato-tes¬ticular inflammation in rats. Biochemistry and Bi¬ophysics Reports. 2023;34:101484. doi:10.1016/j.bbrep.2023.101484
26. Nguyen TMN, Ban SY, Park KB, et al. Evaluation of Toxicity and Efficacy of Inotodiol as an Anti-Inflammatory Agent Using Animal Model. Mol¬ecules. 2022;27(15):4704. doi:10.3390/mole¬cules27154704
27. Banskota AH, Gallant P, Stefanova R, Melanson R, O’Leary SJB. Monogalactosyldiacylglycer¬ols, potent nitric oxide inhibitors from the ma¬rine microalga Tetraselmis chui. Natural Product Research. 2013;27(12):1084-1090. doi:10.1080/14786419.2012.717285
28. Mayer C, Côme M, Ulmann L, et al. The Poten-tial of the Marine Microalga Diacronema lutheri in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats. Mole¬cules. 2022;27(13):4246. doi:10.3390/mole¬cules27134246
29. Moser GAO, Barrera-Alba JJ, Ortega MJ, Alves-de-Souza C, Bartual A. Comparative characterization of three Tetraselmis chui (Chlo¬rophyta) strains as sources of nutraceuticals. J Appl Phycol. 2022;34(2):821-835. doi:10.1007/s10811-021-02675-x
30. Liu X, Yin L, Shen S, Hou Y. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies. Genes & Dis-eases. 2023;10(1):151-164. doi:10.1016/j.gendis.2021.09.006
31. Nejsum LN, Andersen ÅB. Infection and the role in cancer development. APMIS Supplementum. 2020;128(2):71. doi:10.1111/apm.13030
32. Zhou H, Coveney AP, Wu M, et al. Activation of Both TLR and NOD Signaling Confers Host In¬nate Immunity-Mediated Protection Against Mi¬crobial Infection. Frontiers in Immunology. 2019;9. Accessed January 30, 2024. https://www.fron¬ti¬er-sin.org/articles/10.3389/fimmu.2018.03082
33. Resolution of Gastric Cancer-Promoting Inflam-mation: A Novel Strategy for Anti-cancer Ther-apy | SpringerLink. Accessed January 30, 2024. https://link.springer.com/chap-ter/10.1007/978-3-030-15138-6_13