Yttrium-90 Hepatic Therapy and the Importance of Volumetric Voxel-Based Post Therapy Dosimetry: A Case Report on Renal Radiation Dose Volume Analysis with Follow Up

Main Article Content

L Ding S Sioshansi Y Geng L McIntosh E Ruppell R Licho Y Kim A Goldstein K Mittal M Wang S Mehta K Foley K Smith M Bishop-Jodoin TJ FitzGerald

Abstract

This paper is a follow-up report concerning a patient treated with Yttrium-90 to a hepatocellular carcinoma. The radiation therapy dose distribution was published as a case report in 2022, https://doi.org/10.18103/mra.v10i11.3379. The hepatic target volume for directed therapy abutted the right kidney and this report provides clinical follow up information on the patient relative to renal function on unintentional radiation renal dose. Yttrium-90 therapy has become an important therapy component for patient care directed to multiple malignancies with emphasis on treating lesions in close proximity to the hepatic parenchyma. The targets are treated with an intra-arterial approach with a goal of applying target directed radiation therapy. Historically, prior to the development of voxel-based dose volume computation software, dose to target was prescribed as activity of isotope delivered with a qualitative assessment of isotope delivery based on images obtained from single positron emission computer tomography. As a qualitative image, single positron emission computer tomography served as an image reference and qualitative surrogate for representing radiation dose. Today, commercial software is available to fuse single positron emission computer tomography images into radiation oncology planning images and calculate dose to volume in a manner similar to how radiation oncology physics dosimetry teams calculate radiation dose to target volume for external therapy and brachytherapy with image guidance. In this particular case, we demonstrated that the proximity of the right kidney to the target resulted in unintentional radiation dose to renal parenchyma evaluated using voxel-based dosimetry. In this report, we review progressive decrease in renal function with blood urea nitrogen/creatinine of 45 and 2.75 respectively with continued normal liver function. Although potentially multi-factorial in origin, the decrease in renal function is at a time point consistent with radiation injury. In this paper we review radiation oncology dose volume constraints for renal tolerance and strategies for patient care moving forward. The goal is to provide additional knowledge of this issue and provide an additional knowledge layer for patient safety with emphasis on improving patient outcomes.

Article Details

How to Cite
DING, L et al. Yttrium-90 Hepatic Therapy and the Importance of Volumetric Voxel-Based Post Therapy Dosimetry: A Case Report on Renal Radiation Dose Volume Analysis with Follow Up. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5061>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.18103/mra.v12i2.5061.
Section
Case Reports

References

1. Klaus R, Niyazi M, Lange-Sperandio B. Radiation-induced kidney toxicity: molecular and cellular pathogenesis. Radiat Oncol. 2021;16:43. doi:10.1186/s13014-021-01764-y.
2. De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. doi:10.1038/s41572-019-0064-5.
3. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309-326. doi:10.1146/annurev-physiol-022516-034227.
4. Baradaran-Ghahfarokhi M. Radiation induced kidney injury. J Renal Inj Prev. 2012;1(2):49-50. doi:10.12861/jrip.2012.17.
5. Parker GA, Cohen EP, Li N, Takayama K, Farese AM, MacVittie TJ. Radiation nephropathy in a nonhuman primate model of partial-body irradiation with minimal bone marrow sparing-Part 2: Histopathology, mediators, and mechanisms. Health Phys. 2019;116(3):409-425. doi:10.1097/HP.0000000000000935.
6. Mendelsohn ML, Caceres E. Effect of x-ray to the kidney on the renal function of the dog. Am J Physiol. 1953;173(2):351-354. doi:10.1152/ajplegacy.1953.173.2.351.
7. Kunkler PB, Farr RF, Luxton RW. The limit of renal tolerance to x-rays. Br J Radiol. 1952;25(292):190-201. doi:10.1259/0007-1285-25-292-190.
8. Avioli LV, Lazor MZ, Cotlove E, Brace KC, Andrews JR. Early effects of radiation on renal function in man. Am J Med. 1963. 34:329-337. doi:10.1016/0002-9343(63)90120-7.
9. Gup AK, Schlegel JU, Caldwell T, Schlosser J. Effect of irradiation on renal function. J Urol. 1967;97(1):36-39. doi:10.1016/S0022-5347(17)62975-6.
10. Churchill DN, Hong K, Gault MH. Radiation nephritis following combined abdominal radiation and chemotherapy (bleomycin-vinblastine). Cancer. 1978;41(6):2162-2164. doi:10.1002/1097-0142(197806)41:6<2162::aid-cncr2820410614>3.0.co;2-z.
11. Luxton RW, Kunkler PB. Radiation nephritis. Acta Radiol Ther Phys Biol. 1964;2:169-178. doi:10.3109/02841866409134143.
12. Park JS, Yu JI, Lim DH, et al. Impact of radiotherapy on kidney function among patients who received adjuvant treatment for gastric cancer: Logistic and linear regression analyses. Cancers (Basel). 2020;13(1):59. doi:10.3390/cancers13010059.
13. Kal HB, van Kempen-Harteveld ML. Renal dysfunction after total body irradiation: dose-effect relationship. Int J Radiat Oncol Biol Phys. 2006;65(4):1228-1232. doi:10.1016/j.ijrobp.2006.02.021.
14. Moulder JE, Cohen EP. Renal dysfunction after total body irradiation: dose-effect relationship: in regard to Kal and van Kempen-Harteveld. (Int J Radiat Oncol Biol Phys. 2006;65:1228-1232). Int J Radiat Oncol Biol Phys. 2007;67(1):319. author reply 319-320. doi:10.1016/j.ijrobp.2006.09.006.
15. Cohen EP. Radiation nephropathy after bone marrow transplantation. Kidney Int. 2000;58(2):903-918. doi:10.1046/j.1523-1755.2000.00241.x.
16. Moulder JE, Cohen EP. Radiation-induced multi-organ involvement and failure: the contribution of radiation effects on the renal system. Br J Radiol. 2014;78(27):82-88. doi:10.1259/bjr/18309193.
17. Freycon F, Casagranda L, Trombert-Paviot B. The impact of severe late-effects after 12 Gy fractionated total body irradiation and allogeneic stem cell transplantation for childhood leukemia (1988-2010). Pediatr Hematol Oncol. 2019;36(2):86-102. doi:10.1080/08880018.2019.1591549.
18. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3Suppl):S10-19. doi:10.1016/j.ijrobp.2009.07.1754.
19. Paix A, Antoni D, Waissi W, et al. Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit Rev Oncol Hematol. 2018;123:138-148. doi:10.1016/j.critrevonc.2018.01.011.
20. Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35(10):1847-1856. doi:10.1007/s00259-008-0778-1.
21. Schüler E, Larsson M, Parris TZ, Johansson ME, Helou K, Forssell-Aronsson E. Potential biomarkers for radiation-induced renal toxicity following 177Lu-octreotate administration in mice. PLoS One. 2015;10(8):e0136204. doi:10.1371/journal.pone.0136204.
22. O’Donoghue J, Zanzonico P, Humm J, Kesner A. Dosimetry in radiopharmaceutical therapy. J Nucl Med. 2022;63(10):1467-1474 doi:10.2967/jnumed.121.262305.
23. Wahl RL, Sgouros G, Iravani A, et al. Normal-tissue tolerance of radiopharmaceutical therapies, the knowns and the unknowns. J Nucl Med. 2021;62(Suppl 3):23S-35S. doi:10.2967/jnumed.121.262751.
24. Dewaraja YK, Devasia T, Kaza RK, et al. Prediction of tumor control in 90Y radioembolization by logit models with PET/CT-based dose metrics. J Nucl Med. 2020;61(1):104-111. doi:10.2967/jnumed.119.226472.
25. Hofman MS, Emmett L, Sandu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797-804. doi:10.1016/S0140-6736(21)00237-3.
26. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091-1103. doi:10.1056/NEJMoa2107322.
27. Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration resistant prostate cancer: Correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60(4):517-523. doi:10.2967/jnumed.118.219352.
28. Sandström M, Freedman N, Fröss-Baron K, et al. Kidney dosimetry in 777 patients during 177Lu- DOTATATE therapy: aspects on extrapolations and measurement time points. EJNMMI Phys. 2020;7(1):73. doi:10.1186/s40658-020-00339-2.
29. Sgouros G, Dewaria YK, Escorcia E, et al. Tumor response to radiopharmaceutical therapies: The knowns and the unknowns. J Nucl Med. 2021;62(Suppl 3):12S-22S. doi:10.2967/jnumed.121.262750.
30. Ding L, Sioshansi S, Malik H, et al. Yttrium-90 hepatic therapy and the increasing role of volumetric voxel-based post therapy dosimetry: A case report. Medical Research Archives. 2022;10(11). doi:10.18103/mra.v10i11.3379.