Comparative Studies of Continuous Versus Pulsatile Delivery of a Novel Mammalian Cell-Derived Variant of GDNF (GDNFv) into the Rhesus Macaque Striatum

Main Article Content

Richard Grondin Ofelia M. Littrell Yi Ai Peter Huettl Francois Pomerleau Jorge E. Quintero Don M. Gash Zhiming Zhang Greg A. Gerhardt

Abstract

Glial cell line-derived neurotrophic factor (GDNF) remains a promising disease modifying therapeutic agent for the dopamine-containing neurons that are affected in Parkinson’s disease and recent clinical findings show renewed promise for its use in patients with Parkinson’s disease. However, translating this approach from research laboratories to the clinic has been met with obstacles, including insufficient brain biodistribution, immunogenicity, and poor stability of unglycosylated wildtype GDNF produced from bacteria. We have previously reported that continuous infusion of a novel glycosylated mammalian variant of GDNF (GDNFv) has increased biodistribution compared to wildtype GDNF along with increased dopamine turnover in the non-human primate brain. Here, we extend these findings by comparing continuous versus pulsatile intrastriatal infusion of GDNFv in intact rhesus macaques. Intermittent, pulsatile delivery paradigms were explored to possibly enhance drug distribution in the brain while decreasing the total amount of drug and infusion volume needed to achieve target activation. Vehicle or GDNFv was directly administered into the putamen via a pump and catheter system using a constant flow rate or using pulsatile profiles of two patterns: pulsatile infusion of 24-hour duration or 48-hour duration. Study endpoints involved comparisons of brain biodistribution, retrograde transport to nigral neurons and dopamine turnover. Each catheter was placed in or near the center of the putamen as confirmed by post-operative magnetic resonance imaging. Our results support that continuous and pulsatile administration of GDNFv was well tolerated in all animals. In addition, pulsatile delivery of GDNFv demonstrated favorable physiological activity of potential therapeutic value with biodistribution, retrograde transport to nigral cells and significant dopamine turnover modulation comparable or better than that achieved with continuous flow delivery. More importantly, the animals administered GDNFv via pulsatile protocols only received half the total drug amount and half the infused volume used in the continuously-infused animals, while still attaining a similar efficacy in increasing dopamine turnover. These data suggest that pulsatile delivery of trophic factors, such as GDNFv, may be a viable disease altering strategy for patients with Parkinson’s disease by offering a means to reduce the drug amount needed to improve dopamine function while limiting potential therapeutic barriers.

Article Details

How to Cite
GRONDIN, Richard et al. Comparative Studies of Continuous Versus Pulsatile Delivery of a Novel Mammalian Cell-Derived Variant of GDNF (GDNFv) into the Rhesus Macaque Striatum. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5074>. Date accessed: 28 apr. 2024. doi: https://doi.org/10.18103/mra.v12i2.5074.
Section
Review Articles

References

1. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260:1130-1132. doi: 10.1126/science.8493557.
2. Hou JG, Lin LF, Mytilineou C. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J Neurochem. 1996;66:74-82. doi:10.1046/j.1471-4159.1996.66010074.x.
3. Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett. 1994;182:107-111. doi:10.1016/0304-3940(94)90218-6.
4. Kearns CM, Gash DM. GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 1995;20:104-111. doi:10.1016/0006-8993(94)01366-p.
5. Tomac A, Lindqvist E, Lin LFH, Ogre SO, Young D, Hoffer BJ, Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995;373:335-339. doi:10.1038/373335a0.
6. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996;380:252-255. doi:10.1038/380252a0.
7. Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 2002;125:2191-2201. doi:10.1093/brain/awf234.
8. Grondin R, Zhang Z, Ai Y, Gash DM, Gerhardt GA. Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog. Drug Res. 2003;61:101–123. doi:10.1007/978-3-0348-8049-7_4.
9. Bespalov M. M., Sidorova Y. A., Tumova S., Ahonen-Bishopp A., Magalhães A. C., Kulesskiy E., et al. (2011). Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J. Cell Biol. 192 153–169. doi:10.1083/jcb.201009136
10. Grondin, R., Littrell, O. M., Zhang, Z., Ai, Y., Huettl, P., Pomerleau, F., Quintero, J. E., Andersen, A. H., Stenslik, M. J., Bradley, L. H., Lemmon, J., O'Neill, M. J., Gash, D. M., & Gerhardt, G. A. (2019). GDNF revisited: A novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology, 147, 28–36. doi:10.1016/j.neuropharm.2018.05.014.
11. Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA. Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol. 2005;58:224-233. doi:10.1002/ana.20549.
12. Gill SS, Patel NK, Hatton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson’s disease. Nat Med. 2003;9:589-595. doi:10.1038/nm850.
13. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med. 2005;11:703-704. doi:10.1038/nm0705-703.
14. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 2005;102:216-22. doi:10.3171/jns.2005.102.2.0216.
15. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59:459-66. doi:10.1002/ana.20737.
16. Bartus RT, Kordower JH, Johnson EM Jr, Brown L, Kruegel BR, Chu Y, Baumann TL, Lang AE, Olanow CW, Herzog CD. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol Dis.2015;78:162–171. doi:10.1016/j.nbd.2015.03.023.
17. Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson's disease. Brain 2019;142(3):512–525. doi:10.1093/brain/awz023.
18. Barker RA, Björklund A, Gash DM, Whone A, Van Laar A, Kordower JH, Bankiewicz K, Kieburtz K, Saarma M, Booms S, Huttunen HJ, Kells AP, Fiandaca MS, Stoessl AJ, Eidelberg D, Federoff H, Voutilainen MH, Dexter DT, Eberling J, Brundin P, Lang AE. GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's disease 2020;10(3):875–891. doi:10.3233/JPD-202004.
19. Björklund T, Davidsson M. Next-Generation Gene Therapy for Parkinson's Disease Using Engineered Viral Vectors. Journal of Parkinson's Disease 2020;11(s2): S209–S217. doi:10.3233/JPD-212674.
20. Diederich NJ, Goetz CG. The placebo treatments in neurosciences: new insights from clinical and neuroimaging studies. Neurology 2008;71:677e684. doi:10.1212/01.wnl.0000324635.49971.3d.
21. Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW. Crossroads in GDNF therapy for Parkinson's disease. Mov Disord. 2006;21:136-141. doi:10.1002/mds.20861.
22. Salvatore MF, Ai Y, Fischer B, Zhang AM, Grondin RC, Zhang Z, Gerhardt GA, Gash DM. Point source concentration of GDNF may explain failure of Phase II clinical trial. Exp Neurol. 2006;202:497-505. doi:10.1016/j.expneurol.2006.07.015.
23. Tatarewicz SM, Wei X, Gupta S, Masterman D, Swanson SJ, Moxness MS. Development of a maturing T-cell mediated immune response in patients with idiopathic Parkinson’s disease receiving r-metHuGDNF via continuous intraputaminal infusion. J Clin Immunol. 2007;27:620-627. doi:10.1007/s10875-007-9117-8.
24. Piccinini E, Kalkkinen N, Saarma M, Runeberg-Roos P. Glial cell line-derived neurotrophic factor: Characterization of mammalian posttranslational modifications. Annals of Medicine. 2013;45:66-73. doi:10.3109/07853890.2012.663927.
25. Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson’s Disease. J Parkinsons Dis. 2019;9(2):301-313. doi:10.3233/JPD-191576.
26. Rocco MT, Akhter AS, Ehrlich DJ, Scott GC, Lungu C, Munjal V, Aquino A, Lonser RR, Fiandaca MS, Hallett M, Heiss JD, Bankiewicz KS. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson's disease. Mol Ther. 2022;30(12):3632-3638. doi: 10.1016/j.ymthe.2022.08.003.
27. Smith RC, O'Bryan LM, Mitchell PJ, Leung D, Ghanem M, Wilson JM, Hanson JC, Sossick S, Cooper J, Huang L, Merchant KM, Lu J, O'Neill MJ. Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF. Exp Neurol. 2015;267:165e176. doi:10.1016/j.expneurol.2015.03.002.
28. Fan X, Nelson BD, Ai Y, Stiles DK, Gash DM, Hardy PA, Zhang Z. Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques. J Neurosurg. 2015;123(6):1569-77. doi:10.3171/2015.1.JNS132345.
29. Quintero J, Zhang R, Pang Q, Xing Y, Hardy P, Fan X, Ai Y, Gash DM, A Gerhardt G, Grondin R, Zhang Z. Surgical methodology and protocols for preventing implanted cerebral catheters from becoming obstructed during and after neurosurgery. J Neurosci Methods. 2021;349:109020. doi: 10.1016/j.jneumeth.2020.109020
30. Ai Y, Markesbery W, Zhang Z, Grondin R, Elsberry D, Gerhardt GA, Gash DM. Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J Comp Neurol. 2003;461:250-261. doi:10.1002/cne.10689.
31. Cass WA. GDNF selectively protects dopamine neurons over serotonin neurons against the neurotoxic effects of methamphetamine. J Neurosci. 1996;16:8132-8139. doi:10.1523/JNEUROSCI.16-24-08132.1996.
32. Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM. Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem. 2002;80:168–177. doi:10.1046/j.0022-3042.2001.00684.x.