Feasibility Study on the nIORT® Adjuvant Treatment of Glioblastoma Multiforme through the Irradiation Field of Fast Neutrons Produced by a Compact Generator

Main Article Content

Maurizio Martellini Massimo Sarotto Ka-Ngo Leung Leung Giuseppe Gherardi Antonietta Rizzo Giuseppe Ottaviano Lidia Falzone

Abstract

The glioblastoma multiforme (GBM) is the most malignant glial brain tumour with average survival time of 6÷18 months. Emerging evidence suggests that GBM cells appears to reprogram their tumour microenvironment, which is a highly heterogeneous and complex system, so that an efficient GBM radiotherapy (RT) should cover both the cells of the GBM and those of its microenvironment. Relying on a 5-year collaborative research study on the intra-operative radiotherapy (IORT) with fast neutrons - the so-called neutron-IORT (nIORT®) technique - the authors think that this objective could be achieved by using an ionizing radiation field of fast neutrons that behave in the biological tissues as a “foam field” hitting both the GBM cancer cells and the neighbouring microenvironment.


The nIORT® research activities - conducted by TheranostiCentre Srl, Berkion Technology LLC and ENEA - led to the fabrication of the first prototype of a compact neutron generator (CNG) that, through the deuterium-deuterium fusion reaction, produces neutrons of 2.45 MeV energy having: i) high linear energy transfer; ii) very high relative biological effectiveness (RBE), about 16 times higher than X-rays (and electrons) used in standard RT and IORT treatments; iii) reduced oxygen enhancement ratio, and hence resulting be very effective in cancer cells necrosis and apoptosis. The CNG is self-shielded, limited in size and weight (~120 kg) and manageable remotely by a robotic arm. A new prototype equipped by a cylindrical applicator to be inserted in the surgical cavities is currently under construction, with some technical advancements making possible its installation in an operating room dedicated to nIORT® treatments without posing any safety and environmental concern.


In this article the nIORT® potentiality was investigated in the view of the GBM treatment, but the study is however generalisable for the neutron irradiation of other brain cancer pathologies. Accurate Monte Carlo simulations, modelling the CNG equipped with a couple of cylindrical applicators of 4 and 6 cm in diameter inserted in the brain surgical cavity after craniotomy, demonstrated that the nIORT® device operated at 100 kV-10 mA DC supplies a neutron flux ~108 cm-2 s-1 and can deliver equivalent dose rates ~5 Gy (RBE)/min in the centre of the tumour bed. Thus, it could administer the clinical endpoints foreseen by the standard IORT protocols (~10-20 Gy (RBE)) in treatment times of few minutes, by providing a sort of “switching on and off neutron brachytherapy tool” without using needles of radioisotopes (e.g., 252Cf). The near isotropic neutron emission allows to irradiate the tumour bed margins, normally filled by potential quiescent cancer cells, with lower (but still significant) dose levels. This should improve the local control of the tumour through the reduction of local recurrences and metastasis in the tumour microenvironment, and at the same time to avoid adverse effects of the administered neutron radiation field on the surrounding brain central nervous system. Also, the rapid decrease in tissue depth of the dose gradient (within few centimetres) should avoid any adverse effect on normal brain tissues and the neighbouring organs.




Article Details

How to Cite
MARTELLINI, Maurizio et al. Feasibility Study on the nIORT® Adjuvant Treatment of Glioblastoma Multiforme through the Irradiation Field of Fast Neutrons Produced by a Compact Generator. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5090>. Date accessed: 28 apr. 2024. doi: https://doi.org/10.18103/mra.v12i2.5090.
Section
Research Articles

References

1. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glio-blastoma multiforme (GBM): an overview of current therapies and mechanisms of re-sistance. Pharmacol Res. 2021;171. doi: 10.1016/j.phrs.2021.105780.
2. Cifarelli CP, Jacobson GM. Intraoperative Ra-diotherapy in Brain Malignancies: Indications and Outcomes in Primary and Metastatic Brain Tumors. Front. Oncol. Sec. Radiation Oncology 2021;11. doi: 10.3389/fonc.2021.768168.
3. Giordano FA, Abo-Madyan Y, Brehmer S, Her-skind1 C, Sperk E, Schneider F, Clausen S, Welzel1 G, Schmiedek P, Wenz F. Intraoper-ative radiotherapy (IORT) - a resurrected op-tion for treating glioblastoma? Translational Cancer Research 2014;3(1). doi: 10.3978/j.issn.2218-676X.2014.01.03.
4. Sethi A, Emami B, Small W J, Thomas T O. Intraoperative Radiotherapy With INTRA-BEAM: Technical and Dosimetric Considera-tions. Frontiers in Oncology 2018;8. doi:10.3389/fonc.2018.00074.
5. Usychkin S, Calvo F, Dos Santos MA, Samblás J, De Urbina DO, Bustos JC, Gutiérrez Diaz JA, Sallabanda K, Sanz A, Yélamos C, Peraza C, Delgado JM, Marsiglia H. Intra-Operative Electron Beam Radiotherapy for Newly Diag-nosed and Recurrent Malignant Gliomas: Fea-sibility and Long-Term Outcomes. Clin. Transl. Oncol. 2013;15(1). doi: 10.1007/s12094-012-0892-1.
6. Severgnini M, De Denaro M, Bortul M, Vidali C, Beorchia A. In vivo dosimetry and shielding disk alignment verification by EBT3 GAF-CHROMIC film in breast IOERT treatment. Appl. Clin. Med. Phys. 2014;16(1):5065. doi:10.1120/jacmp.v16i1.5065.
7. Chitti B, Goyal S, Sherman JH, Caputy A, Sar-faraz M, Cifter G, Aghdam H, Rao YJ. The role of brachytherapy in the management of brain metastases: a systematic review. Con-temp. Brachytherapy 2020;12(1).
doi: 10.5114/jcb.2020.93543.
8. Hensley FW. Present State and Issues in IORT Physics. Radiat Oncol. 2017;12(1). doi: 10.1186/s13014-016-0754-z.
9. Cifarelli CP, Brehmer S, Vargo JA, Hack JD, Kahl KH, Sarria-Vargas G, Giordano FA. In-traoperative Radiotherapy (IORT) for Surgi-cally Resected Brain Metastases: Outcome Analysis of an International Cooperative Study. Neurooncol. 2019;145(2).
doi: 10.1007/s11060-019-03309-6.
10. Giordano FA, Brehmer S, Mürle B, Welzel G, Sperk E, Keller A, Abo-Madyan Y, Scherzinger E, Clausen S, Schneider F, Herskind C, Glas M, Seiz-Rosenhagen M, Groden C, Hänggi D, Schmiedek P, Emami B, Souhami L, Petrecca K, Wenz F. Intraoperative Radiotherapy in New-ly Diagnosed Glioblastoma (INTRAGO): An Open-Label, Dose-Escalation Phase I/II Trial. Neurosurgery 2019;84(1). doi: 10.1093/neuros/nyy018.
11. D Layer JP, Hamed M, Potthoff AL, Dejonck-heere CS, Layer K, Sarria GR, Scafa D, Koch D, Köksal M, Kugel F, Grimmer M, Holz JA, Zeyen T, Friker LL, Borger V, Schmeel FC, Weller J, Hölzel M, Schäfer N, Garbe S, For-stbauer H, Giordano FA, Herrlinger U, Vatter H, Schneider M, Schmeel LC. Outcome assess-ment of intraoperative radiotherapy for brain metastases: results of a prospective observa-tional study with comparative matched-pair analysis. Neurooncol. 2023;164(1):107-116.
doi: 10.1007/s11060-023-04380-w.
12. Thompson RF, Maity A. Radiotherapy and the tumour microenvironment: mutual influence and clinical implications. Adv. Exp. Med. Biol. 2014;772. doi: 10.1007/978-1-4614-5915-6-7.
13. Klemm F, Joyce JA. Microenvironmental regu-lation of therapeutic response in cancer. Trends Cell Biol. 2015;25(4):198-213. doi: 10.1016/j.tcb.2014.11.006.
14. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ. The brain microenvironment prefer-entially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neo-plasia 2012;14(2). doi: 10.1593/neo.111794.
15. Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int. J. Mol Sci. 2019;20(13).
doi: 10.3390/ijms20133212.
16. Martellini M, Gherardi G. Apparatus for the intraoperative radiotherapy. European Patent 2019; EP 3 522 177 B1.
17. Angom, R.S.; Nakka, N.M.R.; Bhattacharya, S. Advances in Glioblastoma Therapy: An Up-date on Current Approaches. Brain Sci. 2023;13,1536. https://doi.org/10.3390/brainsci13111536
18. International Atomic Energy Agency. Advances in Boron Neutron Capture Therapy. IAEA non-serial Publications 2023; IAEA 978-92-0-132723-9.
19. Nishitani T, Yoshihashi S, Tanagami Y, Tsuchida K, Honda S, Yamazaki A, Watanabe K, Kiyanagi Y, Uritani A. Neutronics Analyses of the Radiation Field at the Accelerator-Based Neutron Source of Nagoya University for the BNCT Study. J. of Nucl. Eng. 2022;3(3). doi:10.3390/jne3030012.
20. Annals of the International Commission on Ra-diological Protection 2007; ICRP 103(37); ISSN 0146-6453, ISBN 978-0-7020-3048-2.
21. Jones B. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams. Phys. Med. Biol. 2021;66, 045028. doi:10.1088/1361-6560/abddd0.
22. Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. Impact of Spherical Applicator Diameter on Relative Biologic Effectiveness of Low Energy IORT X-Rays: A Hybrid Monte Carlo Study. Phys. Med. 2020;80. doi: 10.1016/j.ejmp.2020.11.018.
23. Liu Q, Schneider F, Ma L, Wenz F, Herskind C. Relative Biologic Effectiveness (RBE) of 50 kV X-rays measured in a phantom for intraopera-tive tumor-bed irradiation. Int. J. Radiat. On-col. Biol. Phys. 2013;85(4). doi:10.1016/j.ijrobp.2012.08.005.
24. Calvo FA, Meirino RM, Orecchia R. Intraopera-tive Radiation Therapy First Part: Rationale and Techniques. Crit. Rev. Oncol. Hematol. 2006;59(2).
doi: 10.1016/j.critrevonc.2005.11.004.
25. Dahshan BA, Weir JS, Bice RP, Renz P, Cifarel-li DT, Poplawski L, Hack J, Vargo JA, Cifarelli CP. Dose Homogeneity Analysis of Adjuvant Radiation Treatment in Surgically Resected Brain Metastases: Comparison of IORT, SRS, and IMRT Indices. Brachytherapy 2021;20(2).
doi: 10.1016/j.brachy.2020.11.004.
26. Leung K G. New compact neutron generator system for multiple applications. Nuclear Tech. 2020;206(10). doi:10.1080/00295450.2020.1719800.
27. Martellini M, Gherardi G, Leung K, Leung J K, Sarotto M, Rizzo A. Multi Purpose Compact Apparatus for the Generation of a high-flux of neutrons, particularly for Intraoperative Radio-therapy. Int. Patent 2021; PCT/IT2021/000032. WIPO (World Intellec-tual Property Organisation) 2023;WO 2023/281539 A1.
28. Laboratorio per la caratterizzazione di Irra-diatori Neutronici Compatti in Emilia Roma-gna. LINCER project funded by Emilia Roma-gna with “Legge Regionale 27/12/2018 N.25, DGR N. 545/2019 – CUP I74I19000360003”. 2020-2022.
29. Sarotto M. Parametric MCNP analyses to ad-dress the design of a neutron collimator for high-flux compact DD sources to be used in cancer radiotherapy. Tech. Rep. ENEA 2021; SICNUC-P000-044.
30. Sarotto M, Martellini M. MCNP analyses of the 100 kV D-ion-based compact neutron source: irradiation performances for nIORT® treat-ments with different irradiation window diam-eters. Tech. Rep. ENEA 2022; SICNUC-P000-045.
31. Dousset M H, Hamard J, Ricourt A. Distribution of the dose from neutrons in a thin sample of wet tissue as a function of linear energy trans-fer (LET). Phys. Med. Biol. 1971;16(3). doi:10.1088/0031-9155/16/3/008.
32. Martellini M, Sarotto M, Leung K, Gherardi G, A Compact Neutron Generator for the nIORT® Treatment of Severe Solid Cancers. Medical Research Archives 2023;11(3). doi:10.18103/mra.v 11i3.379.
33. Pelowitz B. MCNP6 user’s manual. Tech. Rep. Los Alamos National Lab 2013; LA-CP-13-00634 Rev. 0.
34. Obložinský P. Special Issue on Nuclear Data. Nuclear Data Sheets 2018;148. ISSN: 0090-3752.
35. Baiocco G, Barbieri S, Babini G, Morini J, Al-loni D, Friedland W, Kundrát P, Schmitt E, Puchalska M, Sihver L, Ottolenghi A. The origin of neutron biological effectiveness as a func-tion of energy. Scientific Reports 2016;6:34033. doi:10.1038/srep34033.
36. Kramer R, Zankl M, Williams G, Drexler G. The calculation of dose from external pho-ton exposures using reference human phan-toms and Monte-Carlo: part I. The male (Ad-am) and female (Eva) adult mathematical phantom. Tech. Report GSF 1982; S-885 (Germany).
37. Pilar A, Gupta M, Laskar S G, Laskar S, In-traoperative radiotherapy: review of tech-niques and results. ecancer medical science 2017;11(750). doi:10.3332/ecancer.2017.750.
38. Hashemi S. Comparison of IORT (Radical and Boost Dose) and EBRT in Terms of Disease-Free Survival and Overall Survival according to Demographic, Pathologic, and Biological Fac-tors in Patients with Breast Cancer. Surgical Oncology 2021;2476527. doi:10.1155/2021/2476527.
39. International Atomic Energy Agency. Current status of neutron capture therapy. IAEA 2001; TECDOC-1223.
40. Bleddyn J. Clinical Radiobiology of Fast Neu-tron Therapy: What Was Learnt? Front. Oncol. Sec. Radiation Oncology 2020;10. doi:10.3389/fonc.2020.01537.
41. Gray LH, Mottram JC, Read J. Some experi-ments upon the biological effects of fast neu-trons. Br. J. Radiol. 1940;13. doi: 10.1259/0007-1285-13-155-371.
42. Gamy S, Ruhm W, Zankl M, Wagner F M, Pa-retzke H G. First steps toward a fast-neutron therapy planning program. Radiation Oncolo-gy 2011;6:163. doi:10.1186/1748-717X-6-163.
43. Van de Kamp G, Heemskerk T, Kanaar R, Es-sers J. DND Double Strand Break Repair Pathways in response to different types of ion-izing radiation. Frontiers in Genetics, Sec. Hu-man and Medical Genomics 2021;12:738230. doi:10.3389/fgene.2021.738230.
44. Herskind C, Ma L, Liu Q, Zhang B, Schneider F, Veldwijk M R, Wenz F. Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects. Radiation Oncology 2017:12:24. doi:10.1186/s13014-016-0750-3.
45. Antonovic L, Lindblom E, Dasu A, Bassler N, Furusawa Y, Toma-Dasu I, Clinical oxygen en-hancement ratio of tumors in carbon ion radio-therapy: the influence of local oxygenation changes. Radiation Research 2014;55(5). doi:10.1093/jrr/rru020.
46. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Lobrich M, Jegg P A. Fac-tors determining DNA double-strand break re-pair pathway choice in G2 phase. EMBO Journal (European Molecular Biology Organi-zation) 2011;30.
47. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K W. Biological response of cancer cells to radi-ation treatment. Frontiers in Molecular Biosci-ences 2014;1. doi:10.3389/fmolb.2014.00024.
48. Busato F, El Khouzai B, Mognato M. Biological Mechanisms to Reduce Radioresistance and In-crease the Efficacy of Radiotherapy: State of the Art. Int. J. of Molecular Science 2022;23(18). doi:10.3390/ijms231810211.
49. Niemantsverdriet, Van Goethem M J, Bron R, Hogewerf W, Brandenburg S, Langendijk J A, Van Luijk P, Coppes R P. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals. Int. J. Radiation Oncol. Biol. Phys. 2012;83(4). doi:10.1016/j.ijrobp.2011.09.057.
50. Mladenova V, Mladenov E, Chaudhary S, Stuschke M, Iliakis G. The high toxicity of DSB-clusters modelling high-LET-DNA damage de-rives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Frontiers in Cell and Developmental Biology 2022;10:1016951. doi:10.3389/fcell.2022.1016951.
51. Mahaney B L, Meek K, Lees-Miller S P. Repair of Ionizing radiation-induced DNA double strand breaks by non-homologous end-joining. Biochemical J. 2009;417(3). doi:10.1042/BJ20080413
52. Marthinsen AB, Gisetstad R, Danielsen S, Frengen J, Strickert T, Lundgren S. Relative Bi-ological Effectiveness of Photon Energies Used in Brachytherapy and Intraoperative Radio-therapy Techniques for Two Breast Cancer Cell Lines. Acta Oncol. 2010;49(8). doi: 10.3109/0284186X.2010.504226.
53. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother. Oncol. 2013;108(3).
doi:10.1016/j.radonc.2013.06.013.
54. Wang C, Smith R W, Duhig J, Prestwich W V, Byun S H, McNeill F E, Seymour C B, Mothersl C E. Neutrons do not produce a bystander ef-fect in zebrafish irradiated in vivo. Int. J. Ra-diat. Biol. 2011;87(9). doi:10.3109/09553002.2011.584939.
55. Gapanova A V, Rodin S, Mazina A A, Vol-chkov V. Epithelial–Mesenchymal Transition: Role in Cancer Progression and the Perspec-tives of Antitumor Treatment. Acta Naturae 2020;12(46).
56. Roche J. The Epithelial-to-Mesenchymal Transi-tion in Cancer. Cancers 2018;10,52. doi:10.3390/cancers10020052.
57. Trivillin V A, Pozzi E C, Colombo L L, Thorp S I, Garabalino M A, Hughes A M, González S J, Farías R O, Curotto P, Santa Cruz G A, Carando D G, Schwint A E. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer. Radiat. Environ. Biophys. 2017;56. doi:10.1007/s00411-017-0704-7.
58. Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodula-tory Effects of Radiotherapy. Int. J. of Molecu-lar Sciences 2020;21(21). https://doi.org/10.3390/ijms21218151.
59. Layer JP, Shiban E, Brehmer S, Diehl CD, Guedes de Castro D, Hamed M, Dejonckheere CS, Cifarelli DT, Friker LL, Herrlinger U, Hölzel M, Vatter H, Schneider M, Combs S E, Schmeel LC, Cifarelli CP, Giordano FA, Sarria GR, Kahl KH. Multicentric assessment of safety and effi-cacy of combinatorial adjuvant brain metasta-sis treatment by intraoperative radiotherapy and immunotherapy. Int. J. of Radiation On-cology*Biology*Physics 2024. https://doi.org/10.1016/j.ijrobp.2024.01.009.
60. Awada H, Paris F and Pecqueur. Exploiting radiation immunostimulatory effects to im-prove glioblastoma outcome. Neuro-Oncology 2023; 25(3). doi: org/10.1093/neuonc/noac239.
61. Chi A and Nguyen N P. Mechanistic rationales for combining immunotherapy with radiother-apy. Front. Immunol. 2023;14. doi: org/10.3389/fimmu2023.1125905.
62. Gillette J S, Wang J E, Dowd R S, Toms S A. Barriers to overcoming immunotherapy re-sistance in glioblastoma. Front. Med. 2023;10. doi: 10.3389/fmed.2023.1175507.
63. Singh N, Miner A, Hennis L, Mittal S. Mecha-nisms of temozolomide resistance in glioblas-toma-a comprehensive review. Cancer Drug Resist. 2021;4. doi: 10.20517/cdr.2020.79.
64. Roldán Urgoiti GB, Singh AD, Easaw JC. Ex-tended adjuvant temozolomide for treatment of newly diagnosed glioblastoma multiforme. Neurooncol. 2012;108(1):173-7. doi: 10.1007/s11060-012-0826-3

Most read articles by the same author(s)