Oxidative Stress: Cannot be Measured, Localized, Prevented, or Treated.

Main Article Content

Angelo Azzi

Abstract

Oxidative stress refers to an imbalance between the production of reactive oxygen species and the ability of the body to detoxify or repair the resulting damage. However, it will be shown that the term "oxidative stress" is often used instead of the correct "oxidative damage”. The term “eustress” has been used for describing beneficial signaling by small amounts of reactive oxygen species, but it will be shown that reactive oxygen species signaling can also promote cancer cell growth. The term "oxidative distress" has been created to describe the negative effects produced on cells, organs, and the entire body by large amounts of reactive oxygen species. However, if the reactive oxygen species are used to kill infectious microorganisms, the result is beneficial. Measurements of oxidative stress in body fluids or tissue specimens are a measure of oxidative damage potentially occurring simultaneously in different cells, tissues, and organs; they only provide a sum of non-separable events, possibly with opposite effects. There is no officially approved therapy to prevent or treat oxidative stress or oxidative damage. This implies that while oxidative stress issues are already a complex challenge for basic biological sciences, in a clinical setting oxidative stress is only a term of convenience with no diagnostic or therapeutic value. A critical appraisal of oxidative stress terminology, quantification, and therapeutic attempts is presented.

Article Details

How to Cite
AZZI, Angelo. Oxidative Stress: Cannot be Measured, Localized, Prevented, or Treated.. Medical Research Archives, [S.l.], v. 12, n. 2, feb. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5121>. Date accessed: 27 apr. 2024. doi: https://doi.org/10.18103/mra.v12i2.5121.
Section
Research Articles

References

1. Paniker NV, Srivastava SK, Beutler E. Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta. Sep 22 1970;215(3):456-60. doi:10.1016/0304-4165(70)90096-6
2. Sies H. Introductory Remarks Oxidative Stress. Academic Press; 1985:1-8.
3. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. Sep-Oct 2006;8(9-10):1865-79. doi:10.1089/ars.2006.8.1865
4. Goodwin T, Christofidou-Solomidou M. Oxidative Stress and Space Biology: An Organ-Based Approach. Int J Mol Sci. 03/23 2018;19:959. doi:10.3390/ijms19040959
5. Armstrong AE, Zerbes R, Fournier PA, Arthur PG. A fluorescent dual labeling technique for the quantitative measurement of reduced and oxidized protein thiols in tissue samples. Free Radic Biol Med. Feb 15 2011;50(4):510-7. doi:10.1016/j.freeradbiomed.2010.11.018
6. Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb). Jan 2021;10(1):68-78. doi:10.1093/toxres/tfaa093
7. Gotz ME, Dirr A, Freyberger A, Burger R, Riederer P. The thiobarbituric acid assay reflects susceptibility to oxygen induced lipid peroxidation in vitro rather than levels of lipid hydroperoxides in vivo: a methodological approach. Neurochem Int. Mar 1993;22(3):255-62. doi:10.1016/0197-0186(93)90053-8
8. Burcham PC. Modified protein carbonyl assay detects oxidised membrane proteins: a new tool for assessing drug- and chemically-induced oxidative cell injury. J Pharmacol Toxicol Methods. Jul-Aug 2007;56(1):18-22. doi:10.1016/j.vascn.2006.02.015
9. Rabilloud T, Chevallet M, Luche S, Leize-Wagner E. Oxidative stress response: a proteomic view. Expert Rev Proteomics. Dec 2005;2(6):949-56. doi:10.1586/14789450.2.6.949
10. Lee MC. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr. Jan 2013;52(1):1-8. doi:10.3164/jcbn.12-58
11. Sies H. Total antioxidant capacity: appraisal of a concept. J Nutr. Jun 2007;137(6):1493-5. doi:10.1093/jn/137.6.1493
12. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009/12/01 2009;46(5-6):241-281. doi:10.3109/10408360903142326
13. de Almeida A, de Oliveira J, da Silva Pontes LV, et al. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxid Med Cell Longev. 2022;2022:1225578. doi:10.1155/2022/1225578
14. Magnani ND, Marchini T, Calabro V, Alvarez S, Evelson P. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Front Endocrinol (Lausanne). 2020;11:568305. doi:10.3389/fendo.2020.568305
15. Moghadam ZM, Henneke P, Kolter J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front Cell Dev Biol. 2021;9:628991. doi:10.3389/fcell.2021.628991
16. Sies H, Belousov VV, Chandel NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. Jul 2022;23(7):499-515. doi:10.1038/s41580-022-00456-z
17. Ďuračková Z. Some current insights into oxidative stress. Physiol Res. 2010;59(4):459-469. doi:10.33549/physiolres.931844
18. Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry. Feb 9 2010;49(5):835-42. doi:10.1021/bi9020378
19. Sies H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants. 2020;9(9)doi:10.3390/antiox9090852
20. Reczek CR, Chandel NS. The Two Faces of Reactive Oxygen Species in Cancer. Annu Rev Cancer Biol. 2017/03/06 2017;1(1):79-98. doi:10.1146/annurev-cancerbio-041916-065808
21. Reczek CR, Chandel NS. ROS Promotes Cancer Cell Survival through Calcium Signaling. Cancer Cell. Jun 11 2018;33(6):949-951. doi:10.1016/j.ccell.2018.05.010
22. Aggarwal V, Tuli HS, Varol A, et al. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. Nov 13 2019;9(11)doi:10.3390/biom9110735
23. Santanam N, Shern-Brewer R, McClatchey R, et al. Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Res. Nov 1998;39(11):2111-8.
24. Dao DQ, Ngo TC, Thong NM, Nam PC. Is Vitamin A an Antioxidant or a Pro-oxidant? J Phys Chem B. Oct 12 2017;121(40):9348-9357. doi:10.1021/acs.jpcb.7b07065
25. Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021;15:4503-4525. doi:10.2147/DDDT.S327378
26. Lotito SB, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. Dec 15 2006;41(12):1727-46. doi:10.1016/j.freeradbiomed.2006.04.033
27. Meffert H. Antioxidants--friend or foe? Ger Med Sci. Sep 3 2008;6:Doc09.
28. Salonen JT, Nyyssonen K, Salonen R, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't. J Intern Med. Nov 2000;248(5):377-86.
29. Krinsky NI, Beecher GR, Burk RF, et al. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. 2000.
30. Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res. Jan 11 2021:1-12. doi:10.1080/10715762.2020.1866181
31. Cadet J, Davies KJA. Oxidative DNA damage & repair: An introduction. Free Radic Biol Med. Jun 2017;107:2-12. doi:10.1016/j.freeradbiomed.2017.03.030
32. Devaraj S, Tang R, Adams-Huet B, et al. Effect of high-dose alpha-tocopherol supplementation on biomarkers of oxidative stress and inflammation and carotid atherosclerosis in patients with coronary artery disease. Randomized Controlled Trial Research Support, N.I.H., Extramural. Am J Clin Nutr. Nov 2007;86(5):1392-8.
33. Villanueva C, Kross RD. Antioxidant-induced stress. Int J Mol Sci. 2012;13(2):2091-109. doi:10.3390/ijms13022091
34. Vrolijk MF, Opperhuizen A, Jansen EH, et al. The shifting perception on antioxidants: The case of vitamin E and beta-carotene. Review. Redox Biol. Apr 2015;4C:272-278. doi:10.1016/j.redox.2014.12.017
35. Galli F, Bonomini M, Bartolini D, et al. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants 2022;11(5):989. doi:10.3390/antiox11050989
36. Theodorou AA, Nikolaidis MG, Paschalis V, et al. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am J Clin Nutr. Jun 2011;93(6):1373-83. doi:10.3945/ajcn.110.009266
37. Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? https://doi.org/10.1113/JP270654. J Physiol. 2016/09/15 2016;594(18):5135-5147. doi:https://doi.org/10.1113/JP270654
38. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021/09/01 2021;20(9):689-709. doi:10.1038/s41573-021-00233-1
39. Ramamoorthy V, Rubens M, Saxena A, Shehadeh N. Selenium and Vitamin E for Prostate Cancer - Justifications for the SELECT Study. Asian Pac J Cancer Prev. 2015;16(7):2619-27.