Hypoxia-Inducible Factor mediates the Release of Natriuretic Peptides
Main Article Content
Abstract
Background: The physiology of natriuretic peptides is insufficiently known. The function of mechanical heart alone, mediated by large and rapid volume overloads, has been suggested to be the key operator in the synthesis and release of natriuretic peptides from the endocrine heart. Researchers have concluded that terrestrial mammals, including humans, have a powerful endocrine system that responds to the mechanical stress of the heart by causing instantaneous diuresis and natriuresis. Although one of the most important and valid paradigms in cardiology is that mechanical load increases the oxygen consumption of heart, the investigation of the relationship between mechanical load and oxygen metabolism has been neglected in the studies on circulating natriuretic peptides.
Purpose: To develop a comprehensive conceptual model explaining how the oxygen metabolism plays a central role in the biology of natriuretic peptides.
Conclusions: All cells including cardiac myocytes, share an oxygen sensing pathway which is regulated through a nuclear transcription factor, the Hypoxia-Inducible Factor. When the oxygen concentration is normal Hypoxia-Inducible Factor is rapidly oxidized, whereas in hypoxic conditions, Hypoxia-Inducible Factor starts to accumulate and trigger downhill the expression of hundreds of genes such as the genes for A-type and B-type natriuretic peptide. As a result of diuresis, natriuresis, and plasma shift from intravascular space to extravascular space, circulating natriuretic peptides cause volume contraction and hemoconcentration contributing to the transport of oxygen into tissues and organs.
Implications: Understanding the biology of natriuretic peptides in cardiac diseases would increase the usefulness of plasma measurement of natriuretic peptides.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. de Bold AJ. Thirty years of research on atrial natriuretic factor: historical background and emerging concepts. Can J Physiol Pharmacol. 2011;89:527-531.
3. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg HA. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 981;28:89-94.
4. Nakamura S, Naruse M, Naruse K et al. Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes. Am J Hypertension 1991;4:909-912.
5. Thibault G, Charbonneau C, Bilodeau, J, Schiffrin EL Carcia R. Rat brain natriuretic peptide is localized in atrial granules and released into the circulation. Am J Physiol. 1992;263:R301-R309.
6. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): A new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168:863-870.
7. Lang RE, Thölken H, Ganten D et al. Atrial natriuretic factor: a circulating hormone stimulated by volume loading. Nature 1985;314:2642-2666.
8. Gutterman, DD, Cowley AW Jr. Relating cardiac performance with oxygen consumption: historical observations continue to spawn scientific discovery. Essays on APS classic papers. Am J Physiol. 2006;291:H2555-H2556.
9. Li X, Zhang Q, Nasser MI, et al. Oxygen homeostasis and cardiovascular disease: A role fore HIF? Biomed & Pharmacoth. 2020; 128:1-10.
10. Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J. 2020;87:3888-3906.
11. Chun Y-S, Hyun J-Y, Kwak Y-G et al. Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem J. 2003;370:149-157.
12. Weidemann A, klanke B, Wagner M. et al. Hypoxia, via stimulation of the hypoxia-inducible factor HIF-1α, is a direct and sufficient stimulus for brain-type natriuretic peptide induction. Biochem J. 2008;409:233-242.
13. Goetze JP, Gore A, Moller CH et al. Acute myocardial hypoxia increases BNP gene expression. FASEB J. 2004;18:1928-1930.
14. Casals G, Ros J, Sionis A et al. Hypoxia induces B-type natriuretic peptide release in cell lines derived from human cardiomyocytes. Am J Physiol. 2009;297:H550-H555.
15. Aaltonen V, Kinnunen, K, Jouhilahti E-M et al. Hypoxic conditions stimulate the release of B-type natriuretic peptide from human retinal pigment epithelium cell culture. Acta Ophthalmol. 2014;92:740-744.
16. Zhang Q, Cui B, Li H et al. MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem Biophys Res. Commun. 2013;438; 507-512.
17. Almeida FA, Suzuki M, Maack T. Atrial natriuretic factor increases hematocrit and decreases plasma volume in nephrectomized rats. Life Sci.1986;39:1193-1199.
18. Wijeyaratne CN, Moult, PJA. The effect of α human atrial natriuretic peptide on plasma volume and vascular permeability in normotensive subjects. J Clin Endocrinol Metab. 1993;76:343-346.
19. Isbister JP. Physiology and pathophysiology of blood volume regulation. Transfus Sci. 1997;18:409-423.
20. Kinney MJ, Stein RM, DiScala VA. The polyuria of paroxysmal atrial tachycardia. Circulation 1974;50:429-435.
21. Schiebinger RJ, Linden J. Effect of atrial contraction frequency on atrial natriuretic peptide secretion. Am J Physiol. 1986;251:H1095-H1099.
22. Nishimura K, Ban T, Saito Y, Nakako K, Imura H. Atrial pacing stimulates secretion of atrial natriuretic polypeptide without elevation of atrial pressure in awake dogs with experimental complete atrioventricular block. Circ Res. 1999;66:115-122.
23. Okuno S, Ashida T, Ebihara, A, Sugiyama T, Fuji J. Distinct increase in hematocrit associated with paroxysm of atrial fibrillation. Jpn Heart J. 2000;41:617-622.
24. Eisensehr I, Noachtar S. Haematological aspects of obstructive sleep apnoea. Sleep Med Rev. 2001;5:07-221.
25. Maeder MT, Mueller C, Schoch OD, Ammann P, Rickli H. Biomarkers of cardiovascular stress in obstructive sleep apnea. Clinica Chimica Acta 2016;460:152-163.
26. Lee SH, Wolf PL, Escudero R. et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med. 2000;342:626-633.
27. Arjamaa, O, Nikinmaa M. Natriuretic peptides in hormonal regulation of hypoxia
responses. Am J Physiol. 2009;296:R257-R264.
28. Arjamaa O, Nikinmaa M. Hypoxia regulates the natriuretic peptide system. Int J Physiol Pathophysiol Pharmacol. 2011;30: 191-201.
29. Arjamaa O, Nikinmaa M. Editorial. Oxygen and natriuretic peptide secretion from the heart. Int J Cardiol. 2013;167:1089-1090.
30. Arjamaa O. Physiology of natriuretic peptides: The volume overload hypothesis revisited. World J Cardiol. 2014;6:4-7.
31. Arjamaa O. The endocrine heart: Natriuretic peptides and oxygen metabolism in cardiac diseases. Can J Cardiol. OPEN 2021;3:1149-1152.
32. Zenteno-Savin T, Castellini MA. Changes in the plasma levels of vasoactive hormones during apnea in seals. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;119:7-12.
33. Tsutsui H, Albert NM, Coats AJS et al. Natriuretic peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur J Heart Failure 2023, doi:10.1002/ejhf.2848.
34. Kuzmiak-Glancy S, Covian R, Femnou AN et al. Cardiac performance is limited by oxygen delivery to the mitochondria in the crystalloid-perfused working heart. Am J Physiol. 2018;314:H704-H715.
35. Pell VR, Baark F, Mota F et al. PET imaging of cardiac hypoxia: Hitting hypoxia where it hurts. Curr Cardiovasc Imaging Rep. 2018;11: 7-18.
36. Kudomi, N, Kalliokoski KK, Oikonen VJ et al. Myocardial blood flow and metabolic rate of oxygen measurement in the right and left ventricles at rest and during exercise using 15O-labeled compounds and PET. Front Physiol. 2019, doi: 10.3389/phys.2019.00741.