Effects of aconitine on membrane currents and action potentials in neonatal rat ventricular myocytes and its impact on electrocardiographic changes

Main Article Content

Chih-Ju Chou Edmund Cheung So

Abstract

This study presents an analysis of the electrophysiological effects of aconitine, a toxic diterpenoid alkaloid derived from Aconitum plants, on neonatal rat ventricular myocytes (NRVMs). The research investigates the potential impact of aconitine on various ion currents and cardiac action potentials, shedding light on its arrhythmogenic properties. Whole-cell patch-clamp experiments were conducted to assess the effects of aconitine on delayed-rectifier K+ currents (IK(DR)) and inwardly rectifying K+ currents (IK(IR) in NRVMs. The findings indicate that aconitine exposure led to the inhibition of (IK(DR)) and (IK(IR)), suggesting its potential influence on cardiac repolarization and excitability. Notably, aconitine induced transient inward current (ITI) and early after-depolarizations (EADs) in a concentration- dependent manner, both of which have implications for cardiac arrhythmias. Moreover, the study examined the electrocardiogram changes in Sprague-Dawley rats upon aconitine injection, revealing a prolonged QT interval and the emergence of polymorphic ventricular tachycardia (VTs), indicative of arrhythmic effects. The study emphasizes the importance of understanding the electrophysiological impact of aconitine and similar compounds, considering their potential therapeutic applications and associated toxicities.

Article Details

How to Cite
CHOU, Chih-Ju; SO, Edmund Cheung. Effects of aconitine on membrane currents and action potentials in neonatal rat ventricular myocytes and its impact on electrocardiographic changes. Medical Research Archives, [S.l.], v. 12, n. 3, mar. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5190>. Date accessed: 13 apr. 2024. doi: https://doi.org/10.18103/mra.v12i3.5190.
Section
Research Articles

References

1. Tiwari S, Acharya P, Solanki B, Sharma AK, Rawat S. A review on efforts for improvement in medicinally important chemical constituents inAconitum through biotechnological interventions. 3 Biotech. Jun 2023;13(6):190. doi:10.1007/s13205-023-03578-z
2. Chan TY. Aconitum Alkaloid Poisoning Because of Contamination of Herbs by Aconite Roots. Phytother Res. Jan 2016;30(1):3-8. doi:10.1002/ptr.5495
3. Jin X, Cheng J, Zhang Q, et al. Aconitine - A promising candidate for treating cold and mechanical allodynia in cancer induced bone pain. Biomed Pharmacother. May 2023;161:114284. doi:10.1016/j.biopha.2023.114284
4. Salehi A, Ghanadian M, Zolfaghari B, et al. Neuropharmacological Potential of Diterpenoid Alkaloids. Pharmaceuticals (Basel). May 14 2023;16(5) doi:10.3390/ph16050747
5. Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol. 2023;14:1172939. doi:10.3389/fphar.2023.1172939
6. Yeih DF, Chiang FT, Huang SK. Successful treatment of aconitine induced life threatening ventricular tachyarrhythmia with amiodarone. Heart. Oct 2000;84(4):E8 . doi:10.1136/heart.84.4.e8
7. Chan TY. Aconite poisoning. Clin Toxicol (Phila). Apr 2009;47(4):279-85. doi:10.1080/15563650902904407
8. Kitamura T, Fukamizu S, Hojo R, et al. Various morphologies of bidirectional ventricular tachycardia caused by aconite "Torikabuto" poisoning. J Cardiol Cases. Feb 2013;7(2):e42-e44. doi:10.1016/j.jccase.2012.10.004
9. Coulson JM, Caparrotta TM, Thompson JP. The management of ventricular dysrhythmia in aconite poisoning. Clin Toxicol (Phila). Jun 2017;55(5):313-321. doi:10.1080/15563650.2017.1291944
10. Lin MW, Wang YJ, Liu SI, Lin AA, Lo YC, Wu SN. Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology. May 2008;54(6):912-23. doi:10.1016/j.neuropharm.2008.01.009
11. So EC, Liu PY, Lee CC, Wu SN. High Effectiveness in Actions of Carfilzomib on Delayed-Rectifier K(+) Current and on Spontaneous Action Potentials. Front Pharmacol. 2019;10:1163. doi:10.3389/fphar.2019.01163
12. Foo NP, Liu YF, Wu PC, Hsing CH, Huang BM, So EC. Midazolam's Effects on Delayed-Rectifier K(+) Current and Intermediate-Conductance Ca(2+)-Activated K(+) Channel in Jurkat T-lymphocytes. Int J Mol Sci. Jul 4 2021;22(13)doi:10.3390/ijms22137198
13. Wang Y, Cheng J, Tandan S, Jiang M, McCloskey DT, Hill JA. Transient-outward K+ channel inhibition facilitates L-type Ca2+ current in heart. J Cardiovasc Electrophysiol. Mar 2006;17(3):298-304. doi:10.1111/j.1540-8167.2006.00362.x
14. Wu SN, Chang HD, Sung RJ. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells. Basic Clin Pharmacol Toxicol. May 2006;98(5):510-7. doi:10.1111/j.1742-7843.2006.pto_354.x
15. Wang YJ, Chen BS, Lin MW, et al. Time-dependent block of ultrarapid-delayed rectifier K+ currents by aconitine, a potent cardiotoxin, in heart-derived H9c2 myoblasts and in neonatal rat ventricular myocytes. Toxicol Sci. Dec 2008;106(2):454-63. doi:10.1093/toxsci/kfn189
16. Zhao YT, Wang L, Yi Z. An Unusual Etiology for Bidirectional Ventricular Tachycardia. Can J Cardiol. Mar 2016;32(3):395 e5-6. doi:10.1016/j.cjca.2015.06.024
17. 1Kiss T, Borcsa B, Orvos P, Talosi L, Hohmann J, Csupor D. Diterpene Lipo-Alkaloids with Selective Activities on Cardiac K+ Channels. Planta Med. Nov 2017;83(17):1321-1328. doi:10.1055/s-0043-109556