Solar exposure, the melanocyte and melanoma: Survival pathways and molecular mechanisms.

Main Article Content

David John Mackay Smith

Abstract

The keratinocyte and the melanocyte, the main cellular constituents of the epidermis, are two very different cell types. Despite their different origins and functionality, they come together in the skin, synergistically, to function as a unit to control the adverse effects of solar exposure. The most significant element in this protective process is the ability of the melanocyte to produce melanin. This pigmented polymer is responsible for constitutive skin colour that plays a part in our identity as human individuals but more importantly, provides a tanning response. A change in pigmentation that provides both an immediate and prolonged protective effect from the damaging components of solar radiation.


 


The melanocortin 1 receptor, a cell surface receptor on the melanocyte, receives paracrine stimulation in the form of hormonal communication from the keratinocyte, initiating a series of intracellular molecular interactions in the melanocyte, eventually involving transcription factors in the nucleus, most notably the microphthalmia-associated transcription factor, resulting in upregulation of enzymatic production of melanin and finally, its transfer back to the keratinocyte.


 


The melanocortin 1 receptor is highly polymorphic and unfortunately this results in the Caucasians’ having constitutionally fairer skin combined with an incomplete tanning response, resulting in a higher susceptibility to skin cancer.


 


The melanocyte is a relatively long-lived cell and over its extended life span can accumulate a series of mutational events. With malignant transition to melanoma this oncogenic baggage, when combined with antiapoptotic machinery that helps melanocyte survival, resulting in relatively rapid progression of the malignant process and contributing to its resistance to therapeutics.

Keywords: Solar exposure, melanocyte and melanoma, Survival pathways and molecular mechanisms

Article Details

How to Cite
SMITH, David John Mackay. Solar exposure, the melanocyte and melanoma: Survival pathways and molecular mechanisms.. Medical Research Archives, [S.l.], v. 12, n. 3, mar. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5191>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.18103/mra.v12i3.5191.
Section
Research Articles

References

1. Michaloglou, C., et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. 2005. Nature; 436: 720-724.

2. Goodman, G., Grossman, D. Strategies for early melanoma detection: Approaches to the patient with nevi. 2009. J. Am. Acad. Dermatol; 60(5): 719-735.

3. Bonner-Fraser, m. Knecht, A. Induction of the neural crest: A multigene process. 2002. Genetics: 3(6): 453-461.

4. Bustamante, J., Bredeston, L., Malanga, G. Role of melanin as a scavenger of reactive oxygen species. 1993. Pig Cell Res; 6: 348-353.

5. Kondo, T., Hearing, V. Update on the regulation of mammalian melanocyte function and skin pigmentation. 2011. Ex. Rev. Dermatol;6: 97-108.

6. Abdul-Malek, Z., Swope, V., Suzuki, I., et al. Paracrine regulation of human melanocytes by a-MSH, endothelin-1, basic FGF and the agouti protein. 1995a. Pig Cell Res. Suppl; 4.24.

7. Abdul-Malek, Z., Swope, V., Suzuki, I., et al. Mitogenic and Melanogenic stimulation of normal human melanocytes by melanotrophic peptides. 1995b. Proc. Natl. Acad. Sci. USA; 92: 1789-1793.

8. Swope, V., Medrano, E., Smalara, D., et al. Long-term proliferation of human melanocytes is supported by physiologic alpha melanotropin, endothelin-1 and basic fibroblast growth factor. 1995. Exp. Cell Res; 217: 453-459.

9. Pathak, M. “The photobiology of melanin pigmentation in human skin”. 1971. In Biology of normal and abnormal melanocytes. Ed. T Kawamura. T. Fitzgerald and N Seji (Baltimore: University Park Press).

10. Gilchrist, B., Eller, M., Geller, A., et al. The pathogenesis of melanoma induced by ultraviolet radiation. 1999. New Eng. J. Med; 340: 1341-1348.

11. Dubin, N., Moseson, M., Postermack, B. Sun exposure and malignant melanoma among susceptible individuals. 1989. Environ. Health. Perspect; 81: 139-151.

12. Wakamatsu, K., Kavanagh, K., Kadekaro, A., et al. Diversity of pigmentation in cultured human melanocytes is due to differences in type as well as quantity of melanin. 2006. Pig. Cell. Res; 19: 154-162.

13. Meredith, P., Sarna, T. The physical and chemical properties of eumelanin. 2006. Pigment Cell. Res; 19:572-594.

14. Hauser, J., Kadekaro, A., Kavanaugh, K., et al. Melanin content and MC1R function independently affecting UVR-induced DNA damage in cultured human melanocytes .2006. Pigment Cell. Res; 19: 303-314.

15. Panzella, L., Leone, l., Greco, G., et al. Red human hair phenotype is a potent pro-oxidant mediating UV-independent contributory mechanism of melanomagenesis. 2014. Pigment Cell Res; 27: 244-252.

16. Mitra, D., Luo, X., Morgan, A., et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. 2012. Nature: 449-453.

17. Smith, D. The melanocortin 1 receptor and its influence on naevi and melanoma in dark-skinned phenotypes. 2018.Aust. J Dermatol; doi: 10.1111/ajd.12982.

18. Garcia-Borron, J., Abdul-Malek, Z., Jimenez-Cervantes, C. MC1R, the cAMP pathway, and the response to solar UV: Extending the horizon beyond pigmentation. 2014. Arch. Biochem & Biophys; 563:22-27.

19. Im, S., Moro, O., Pong, F., et al. Activation of the cyclic AMP pathway by alpha-melanocortin mediates the response of human melanocytes to ultraviolet B radiation. 1998. Cancer Res; 58: 47-54.

20. Scott, m., Wakamatsu, K., Ito, S., et al. Human melanocortin1 receptor variants, receptor function and melanocyte response to UV radiation. 2002. J Cell Sci; 115(110): 2349-2355.

21. Bohm, M., Wollf, L., Scholzen, T., et al. alpha melanocyte stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage 2005. J Biol. Chem; 280: 5795-5802.

22. Kadekaro, A., Kavanaugh, R., Kanto, H., et al. Alpha-melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. 2005. Cancer Res; 65: 4292-4299.

23. Denat, L., Kadekaro, A., Marrot, L., et al. Melanocytes as instigators and victims of oxidative stress. 2014. J Invest. Dermatol; 134: 1518.

24. Kotot, A., Metze, D., Mouchet, N., et al. Alpha-melanocyte stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. 2009. Endocrinology; 150: 3197-3206.

25. Kadekaro, A., Chen, J., Yang, J., et al. alpha melanocyte stimulating hormone suppresses oxidative stress through a p53-mediated signalling pathway in human melanocytes. 2012. Mol. Cancer Res; 65: 4292-4299.

26. Kadekaro, A., Leachman, S., Swope, V., et al. Melanocortin1 receptor genotype is an important determinant of the damage response of melanocytes to ultraviolet radiation. 2010. FASEB J; 24: 3850-3860.

27. Cimprich, K., Cortez, D. ATR: an essential regulator of genome integrity. 2008. Nat. Rev. Mol. Biol; 9: 616-627.

28. Swope, V., Alexander, C., Starner, R., et al. Significance of the melanocortin 1 receptor in the DNA damage response of human melanocytes to ultraviolet radiation. 2014. Pig Cell melanoma Res; 27: 601-610.

29. Celeste, A., Petersen, S., Romanienko, P., et al. Genomic stability in mice lacking histone H2AX. 2002. Science; 296: 922-927.

30. Hanawalt, P. Subpathways of nucleotide excision repair and their regulation. 2002. Oncogene; 21: 8949-8956.

31. Jarrettt, S., Horrell, E., Christian, P., et al. PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. 2014. Mol. Cell; 54: 999-1011.

32. Imokawa, G., Kobayashi, T., Miyagashi, M., et al. The role of endothelin-1in epidermal hyperpigmentation and signalling mechanisms of mitogenesis and melanogenesis. 1997. Pig cell Res; 10: 218-228.

33. Steingrimsson, E., Copeland, N., Jenkins, N. Melanocytes and the microphthalmia transcription factor network. 2004. Ann. Rev. Genet; 38: 365-411.

34. Cheli, Y., Ohanna, M., Bellotti, R. Fifteen-year quest for microphthalmia-associated transcription factor target genes. 2009. Pig. Cell Res; 23: 29-40.

35. Herraiz, C., Journe, F., Abdul-Malek, Z., et al. Signalling from the melanocortin 1 receptor to ERK1/2 mitogen-activating protein kinase involves transactivation of cKIT.2011. Mol. Endocrinol; 25: 138-156.

36. Wu, M., Hemesath, T., Takemoto, C., et al. cKit triggers dual phosphorylations which couple activation and degradation of the essential melanocyte factor Mi. 2000. Genes Dev; 14: 301-312.

37. Chouinard, N., Valerie, K., Rouabhia, M., et al. UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilisation of cytoplasmic p53. 2002. Biochem. J; 365: 133-145.

38. Marrot, L., Belaidi, J., Jones, c., et al. Molecular response to stress induced in normal human Caucasian melanocytes in culture by exposure to simulated solar UV. 2005. Photochem. Photobiol; 81: 367-375.

39. Ono, K., Han, J. The p38 signal transduction pathway. Activation and function. 2000. Cell signal; 12: 1-13.

40. Corre, S., Mokidache, K., Adamski, H., et al. In vivo and exvivo UV-induced analysis of pigment gene expression. 2006. J Invest. Dermatol; 126: 916-918.

41. Galibert, M., Boucontet, L., Goding, C., et al. Regulation of the E-C4 element from the C4 complement gene promoter by the upstream stimulatory factor-1 transcription factor. 1997. J Immunol; 159: 6176-6183.

42. Hayakawa, J., Mittral, S., Wang, Y., et al. Identification of promoters bound by C-Jun/ATF-2 during rapid large-scale gene activation following genomic stress. 2004. Mol. Cell; 16: 521-535.

43. Von Koschembahr, A., Swope, V., Starner, R., et al. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signal pathways. 2015. Exp. Dermatol; 24: 269-274.

44. Lau, E., Kluger, T., Varsono, K., et al. PKC epsilon promotes oncogenic function of ATF2 in the nucleus while blocking its apoptotic function at the mitochondria. 2012. Cell; 148(3): 543-555.

45. Bhournik, A., Fichtman, B., Derossi, C., et al. Suppressor role of activating transcription factor2 (ATF2) in skin cancer. 2008. Proc. Natl. Acad. Sci. USA; 105(5): 1674-1679.

46. Learner, A., Shiohara, T., Boissy, R., et al. A mouse model for vitiligo. 1986. J Invest. Dermatol; 87: 299-304.

47. McGill, G., Horstmann, M., Widlund, H., et al. Bcl2 regulation by the melanocyte master regulator Mitf modifies lineage survival and melanoma cell viability. 2002. Cell; 109:707-718.

48. Raj, D., Liu, T., Sanadashwily, G., et al. Survivin repression by p53, Rb, and E2F2 in human melanocytes. 2008. Carcinogenesis; 29(1): 194-201.

49. Satyamoorthy, K., et al. No longer a molecular black hole-new clues to apoptosis and drug resistance in melanoma. 2001. Trends Mol Med; 7: 191-194.

50. Haas, N., Herlyn, M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. 2005. J Investig. Dermatol. Symp. Proc; 10: 153-163.

51. Haas, N., Smalley, K., Herlyn, M., Adhesion, migration and communication in melanocytes and melanoma. 2005a. Pig. Cell Res; 18: 150-159.

52. Berking, C., Takemoto, R., Satyamoorthy, K., et al. Basic fibroblast growth factor and ultraviolet B transform melanocytes in human skin. 2001. Am. J Pathol; 158: 943-953.

53. Berking, C., Takemoto, R., Satyamoorthy, K., et al. Induction of melanoma phenotype in human skin by growth factors and ultraviolet B. 2004. Cancer Res; 64: 807-811.