Using Structural Equation Modeling to Investigate the Neural Basis of Altered Pain Processing in Fibromyalgia with Functional Magnetic Resonance Imaging

Main Article Content

Howard J. M. Warren Gabriela Ioachim Gabriela Ioachim Jocelyn M. Powers Roland Staud Caroline Pukall Patrick W. Stroman

Abstract

Participants with fibromyalgia (FM) and healthy controls (HC) experienced an identical ‘threat/safety’ experimental pain paradigm while undergoing functional magnetic resonance imaging (fMRI) to investigate the differences in pain processing between the two groups. In the ‘threat’ (Pain) imaging runs, participants were told that they would receive noxious heat stimuli to their right hands, calibrated to elicit subjectively moderate levels of pain. In the ‘safety’ (No-Pain) imaging runs, no stimulus was given. This design enabled the study of both continuous and reactive components of pain processing, as well as brain activity associated with anticipation and reward. The fMRI data were analyzed with a data-driven structural equation modeling approach, and significant group-level connectivity differences were identified in both study conditions, in both time periods of interest (Expectation, Stimulation). Group-level connectivity differences in the No-Pain condition occurred mainly during the expectation of pain, and involved regions associated with emotion and reward, suggesting FM may involve altered affective/reward processing. Group-level connectivity differences in the Pain condition occurred mainly during stimulation, with the FM group having decreased connectivity between the anterior cingulate cortex (ACC) and the amygdala, and increased connectivity between the posterior cingulate cortex (PCC) and the thalamus. The decreased ACC→Amygdala connectivity supports previous findings, suggesting FM likely involves altered responses in motivational-affective aspects of pain processing. The increased PCC→Thalamus connectivity may suggest the FM group experienced heightened saliency toward the noxious stimuli, which may contribute toward the mechanism which causes hyperalgesia in FM.

Keywords: human, pain, fibromyalgia, neuroimaging, MRI, functional MRI

Article Details

How to Cite
WARREN, Howard J. M. et al. Using Structural Equation Modeling to Investigate the Neural Basis of Altered Pain Processing in Fibromyalgia with Functional Magnetic Resonance Imaging. Medical Research Archives, [S.l.], v. 12, n. 3, mar. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5206>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.18103/mra.v12i3.5206.
Section
Research Articles

References

1. Bruce BK, Allman ME, Rivera FA, et al. Opioid Use in Fibromyalgia Continues despite Guidelines That Do Not Support Its Efficacy or Risk. J Clin Rheumatol. 2021;27(5):187-193. doi:10.1097/RHU.0000000000001273
2. Schweinhardt P, Sauro KM, Bushnell MC. Fibromyalgia: A disorder of the brain? Neuroscientist. 2008;14(5):415-421. doi:10.1177/1073858407312521
3. Jensen KB, Kosek E, Petzke F, et al. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144(1-2):95-100. doi:10.1016/j.pain.2009.03.018
4. Jensen KB, Loitoile R, Kosek E, et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol Pain. 2012;8:1-9. doi:10.1186/1744-8069-8-32
5. Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. Functional Imaging of Pain in Patients with Primary Fibromyalgia. J Rheumatol. 2004;31(2):364-378.
6. Loggia ML, Berna C, Kim J, et al. Disrupted Brain Circuitry for Pain-Related Reward/Punishment in Fibromyalgia. Arthritis Rheumatol. 2014;66(1):203-212. doi:10.1002/art.38191
7. Bosma RL, Mojarad EA, Leung L, Pukall C, Staud R, Stroman PW. FMRI of spinal and supra-spinal correlates of temporal pain summation in fibromyalgia patients. Hum Brain Mapp. 2016. doi:10.1002/hbm.23106
8. López-Solà M, Woo CW, Pujol J, et al. Towards a neurophysiological signature for fibromyalgia. Pain. 2017;158(1):34-47. doi:10.1097/j.pain.0000000000000707
9. Giesecke T, Gracely RH, Grant MAB, et al. Evidence of Augmented Central Pain Processing in Idiopathic Chronic Low Back Pain. Arthritis Rheum. 2004;50(2):613-623. doi:10.1002/art.20063
10. Jensen KB, Srinivasan P, Spaeth R, Tan Y, Kosek E. Overlapping structural and functional brain changes in FMS. Arthritis Rheumatol. 2014;65(12):3293-3303. doi:10.1002/art.38170.Overlapping
11. Pujol J, López-Solà M, Ortiz H, et al. Mapping brain response to pain in fibromyalgia patients using temporal analysis of fMRI. PLoS One. 2009;4(4). doi:10.1371/journal.pone.0005224
12. Kim SH, Chang Y, Kim JH, et al. Insular cortex is a trait marker for pain processing in fibromyalgia syndrome - Blood oxygenation level-dependent functional magnetic resonance imaging study in Korea. Clin Exp Rheumatol. 2011;29(6 SUPPL. 69).
13. Kim J, Loggia ML, Cahalan CM, et al. The somatosensory link in fibromyalgia: Functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol. 2015;67(5):1395-1405. doi:10.1002/art.39043
14. 14. Craggs JG, Staud R, Robinson ME, Perlstein WM, Price DD. Effective connectivity among brain regions associated with slow temporal summation of C-fiber-evoked pain in fibromyalgia patients and healthy controls. J Pain. 2012;13(4):390-400. doi:10.1016/j.jpain.2012.01.002
15. Staud R, Craggs JG, Perlstein WM, Robinson ME, Price DD. Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls. Eur J Pain. 2008;12(8):1078-1089. doi:10.1016/j.ejpain.2008.02.002
16. Schreiber KL, Loggia ML, Kim J, Cahalan CM, Napadow V, Edwards RR. Painful After-Sensations in Fibromyalgia are Linked to Catastrophizing and Differences in Brain Response in the Medial Temporal Lobe. J Pain. 2017;18(7):855-867. doi:10.1016/j.jpain.2017.02.437
17. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46(5): 1333-1343. doi:10.1002/art.10225
18. Warren HJ, Ioachim G, Powers JM, Stroman PW. How fMRI Analysis Using Structural Equation Modeling Techniques Can Improve Our Understanding of Pain Processing in Fibromyalgia. J Pain Res. 2021;Volume 14:381-398. doi:10.2147/jpr.s290795
19. Arnold LM, Bennett RM, Crofford LJ, et al. AAPT Diagnostic Criteria for Fibromyalgia. J Pain. 2019;20(6):611-628. doi:10.1016/j.jpain.2018.10.008
20. Fitzcharles MA, Perrot S, Häuser W. Comorbid fibromyalgia: A qualitative review of prevalence and importance. Eur J Pain (United Kingdom). 2018;22(9):1565-1576. doi:10.1002/ejp.1252
21. Arnold LM, Choy E, Clauw DJ, et al. Fibromyalgia and chronic pain syndromes: A white paper detailing current challenges in the field. Clin J Pain. 2016;32:737-746. doi:10.1097/AJP.0000000000000354
22. Lichtenstein A, Tiosano S, Amital H. The complexities of fibromyalgia and its comorbidities. Curr Opin Rheumatol. 2018;30(1):94-100. doi:10.1097/BOR.0000000000000464
23. Kulshreshtha P, Gupta R, Yadav RK, Bijlani RL, Deepak KK. A comprehensive study of autonomic dysfunction in the fibromyalgia patients. Clin Auton Res. 2012;22(3):117-122. doi:10.1007/s10286-011-0150-6
24. Kulshreshtha P, Deepak KK. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: A mini review. Clin Physiol Funct Imaging. 2013;33(2):83-91. doi:10.1111/cpf.12000
25. Schmidt-Wilcke T, Diers M. New insights into the pathophysiology and treatment of fibromyalgia. Biomedicines. 2017;5(2):1-11. doi:10.3390/biomedicines5020022
26. Sluka KA, Clauw DJ. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience. 2016;338:114-129. doi:10.1016/j.neuroscience.2016.06.006
27. Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain. 1977;3:57-68.
28. Staud R, Robinson ME, Price DD. Temporal Summation of Second Pain and Its Maintenance Are Useful for Characterizing Widespread Central Sensitization of Fibromyalgia Patients. J Pain. 2007;8(11):893-901. doi:10.1016/j.jpain.2007.06.006
29. Stroman PW. Validation of structural equation modeling methods for functional MRI data acquired in the human brainstem and spinal cord. Crit Rev Biomed Eng. 2016;44(4):227-241. doi:10.1615/CritRevBiomedEng.2017020438
30. Stroman PW, Warren HJM, Ioachim G, Powers JM, McNeil K. A Comparison of the Effectiveness of Functional MRI Analysis Methods for Pain Research : The New Normal. 2020.
31. Spielberger CD. State-Trait Anxiety Inventory. In: The Corsini Encyclopedia of Psychology. ; 2010. doi:10.1002/9780470479216.corpsy0943
32. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. Inventory for Measuring Depression. Arch Gen Psychiatry. 1961:561-571.
33. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: A refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196-1201. doi:10.1016/j.mayocp.2012.10.013
34. Adler GK, Geenen R. Hypothalamic-pituitary-adrenal and autonomic nervous system functioning in fibromyalgia. Rheum Dis Clin North Am. 2005;31(1):187-202. doi:10.1016/j.rdc.2004.10.002
35. Chalaye P, Goffaux P, Bourgault P, et al. Comparing pain modulation and autonomic responses in fibromyalgia and irritable bowel syndrome patients. Clin J Pain. 2012;28(6):519-526. doi:10.1097/AJP.0b013e31823ae69e
36. Chalaye P, Lafrenaye S, Goffaux P, Marchand S. The role of cardiovascular activity in fibromyalgia and conditioned pain modulation. Pain. 2014;155(6):1064-1069. doi:10.1016/j.pain.2013.12.023
37. Vincent A, Whipple MO, Low PA, Joyner M, Hoskin TL. Patients With Fibromyalgia Have Significant Autonomic Symptoms But Modest Autonomic Dysfunction. PM R. 2016;8(5):425-435. doi:10.1016/j.pmrj.2015.08.008
38. Crowne DP, Marlowe D. A new scale of social desirability independent of psychopathology. J Consult Psychol. 1960;24(4):349-354. doi:10.1037/h0047358
39. Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: Development and Validation. Psychol Assess. 1995;7(4):524-532.
40. Bennett RM, Friend R, Jones KD, Ward R, Han BK, Ross RL. The revised fibromyalgia impact questionnaire (FIQR): Validation and psychometric properties. Arthritis Res Ther. 2009;11(4):1-14. doi:10.1186/ar2783
41. Dworkin RH, Turk DC, Revicki DA, et al. Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain. 2009;144(1-2):35-42. doi:10.1016/j.pain.2009.02.007
42. Wolfe F, Clauw DJ, Fitzcharles MA, et al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. 2016;46(3):319-329. doi:10.1016/j.semarthrit.2016.08.012
43. Wolfe F, Smythe HA, Yunus MB, et al. The american college of rheumatology 1990 criteria for the classification of fibromyalgia. Arthritis Rheum. 1990;33(2):160-172. doi:10.1002/art.1780330203
44. Wolfe F, Häuser W. Fibromyalgia diagnosis and diagnostic criteria. Ann Med. 2011;43(7):495-502. doi:10.3109/07853890.2011.595734
45. Staud R, Price DD, Fillingim RB. Advanced Continuous-Contact Heat Pulse Design for Efficient Temporal Summation of Second Pain (Windup). J Pain. 2006;7(8):575-582. doi:10.1016/j.jpain.2006.02.005
46. Vierck CJ, Cannon RL, Fry G, Maixner W, Whitsel BL. Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J Neurophysiol. 1997;78(2):992-1002. doi:10.1152/jn.1997.78.2.992
47. Stroman PW, Bosma RL, Cotoi AI, et al. Continuous descending modulation of the spinal cord revealed by functional MRI. PLoS One. 2016;11(12):1-17. doi:10.1371/journal.pone.0167317
48. Stroman PW, Ioachim G, Powers JM, Staud R, Pukall C. Pain processing in the human brainstem and spinal cord before, during, and after the application of noxious heat stimuli. Pain. 2018;159(10):2012-2020. doi:10.1097/j.pain.0000000000001302
49. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355-474. doi:10.1016/s0301-0082(02)00009-6
50. Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Internal architecture of the brain stem with key axial sections. In: Duvernoy’s Atlas of the Human Brain Stem and Cerebellum. New York: Springer-Verlag/Wien; 2009:79-82.
51. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect. 2012. doi:10.1089/brain.2012.0073
52. Navratilova E, Atcherley CW, Porreca F. Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci. 2015;38(11):741-750. doi:10.1016/j.tins.2015.09.003
53. Leknes S, Lee M, Berna C, Andersson J, Tracey I. Relief as a reward: Hedonic and neural responses to safety from pain. PLoS One. 2011;6(4). doi:10.1371/journal.pone.0017870
54. Lingala SM, Ghany MGMMhs. Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience. 2016;25(3):289-313. doi:10.1007/s11065-015-9294-9. Functional
55. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. 2008;9(4):314-320. doi:10.1038/nrn2333
56. Pujol J, Macià D, Garcia-Fontanals A, et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain. 2014;155(8):1492-1503. doi:10.1016/j.pain.2014.04.028
57. Čeko M, Frangos E, Gracely J, et al. Default mode network changes in fibromyalgia patients are largely dependent on current clinical pain. Neuroimage. 2020;216(April). doi:10.1016/j.neuroimage.2020.116877
58. Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012;64(7):2398-2403. doi:10.1002/art.34412
59. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62(8):2545-2555. doi:10.1002/art.27497
60. Bushnell MC, Čeko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502-511. doi:10.1038/nrn3516
61. Berridge KC, Kringelbach ML, Arbor A, Hospital W. Pleasure Systems of the Brain. Neuron. 2016;86(3):646-664. doi:10.1016/j.neuron.2015.02.018.Pleasure
62. Hu H. Reward and Aversion. Annu Rev Neurosci. 2016;39:297-324. doi:10.1146/annurev-neuro-070815-014106
63. Bariselli S, Glangetas C, Tzanoulinou S, Bellone C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J Neurochem. 2016;139(6):1071-1080. doi:10.1111/jnc.13779
64. Harris H, Peng Y. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen Res. 2020;15(4):597-605. doi:10.4103/1673-5374.266909
65. 65. Benarroch EE. The amygdala: Functional organization and involvement in neurologic disorders. Neurology. 2015;84(3):313-324. doi:10.1212/WNL.0000000000001171
66. Maire JJ, Close LN, Heinricher MM, Selden NR. Distinct pathways for norepinephrine- and opioid-triggered antinociception from the amygdala. Eur J Pain. 2016;20(2):206-214. doi:10.1002/ejp.708
67. Butler RK, Ehling S, Barbar M, et al. Distinct neuronal populations in the basolateral and central amygdala are activated with acute pain, conditioned fear, and fear-conditioned analgesia. Neurosci Lett. 2017;661(September):11-17. doi:10.1016/j.neulet.2017.09.025
68. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol. 2009;88:184-202. doi:http://dx.doi.org/10.1016/j.pneurobio.2009.04.003
69. Jahan F, Nanji K, Qidwai W, Qasim R. Fibromyalgia Syndrome: An Overview of Pathophysiology, Diagnosis and Management. Oman Med Jouranl. 2012;27(3):192-195. doi:10. 5001/omj.2012.44
70. Martinez-Lavin M. Fibromyalgia as a sympathetically maintained pain syndrome. Curr Pain Headache Rep. 2004;8(5):385-389. doi:10.1007/s11916-996-0012-4
71. Martinez-Lavin M. Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia. Arthritis Res Ther. 2007;9(4). doi:10.1186/ar2146
72. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12-32. doi:10.1093/brain/awt162
73. Nielsen FÅ, Balslev D, Hansen LK. Mining the posterior cingulate: Segregation between memory and pain components. Neuroimage. 2005;27(3):520-532. doi:10.1016/j.neuroimage.2005.04.034
74. Lee J, Protsenko E, Lazaridou A, et al. Encoding of Self-Referential Pain Catastrophizing in the Posterior Cingulate Cortex in Fibromyalgia. Arthritis Rheumatol. 2018;70(8):1308-1318. doi:10.1002/art.40507
75. Zeidan F, Salomons T, Farris SR, et al. Neural mechanisms supporting the relationship between dispositional mindfulness and pain. Pain. 2018;159(12):2477-2485. doi:10.1097/j.pain.0000000000001344
76. Hubbard CS, Lazaridou A, Cahalan CM, et al. Aberrant Salience? Brain Hyperactivation in Response to Pain Onset and Offset in Fibromyalgia. Arthritis Rheumatol. 2020;72(7):1203-1213. doi:10.1002/art.41220