Advancements in Molecular Imaging for the Diagnosis and Management of Hepatocellular Carcinoma

Main Article Content

Farshid Gheisari Reza Vali


Hepatocellular Carcinoma (HCC) is a growing global health burden with high incidence and mortality rates. Despite advances in surgical techniques and perioperative care, outcomes after surgical treatment have not improved over the past three decades. Molecular imaging is an emerging field that enables researchers to study diseases at the molecular and cellular levels, enabling the detection of elevated serum α-fetoprotein (AFP) and abnormal expressions of various HCC-specific and nonspecific cell surface antigens and intracellular targets. Molecular imaging techniques detect liver lesions at the molecular and cellular level, allowing early detection and accurate staging of HCC. Positron emission tomography (PET) imaging offers greater sensitivity and specificity, while hepatobiliary-specific radiotracers with SPECT imaging provide insights into benign and malignant lesion differentiation. Radiomics and artificial intelligence are vital in deciphering molecular imaging data, with machine learning algorithms boosting diagnostic gains and predicting treatment response. Theranostics, a state-of-the-art application, provides diagnostic and therapeutic leverage following a single imaging agent. By understanding tumor biology in real time, radiopharmaceuticals can be transformed into personalized radiotherapies, enabling clinicians to make science-driven decisions throughout the illness. Future directions include developing novel radiotracers and integrating AI into clinical decision-making. Collaboration between academic researchers, clinicians, and industry colleagues is crucial to converting exciting advances into improved clinical outcomes for HCC patients.

Keywords: Hepatocellular Carcinoma, Molecular Imaging, Positron Emission Tomography, Single-Photon Emission Computed Tomography, Radiomics, Theranostics, Artificial Intelligence

Article Details

How to Cite
GHEISARI, Farshid; VALI, Reza. Advancements in Molecular Imaging for the Diagnosis and Management of Hepatocellular Carcinoma. Medical Research Archives, [S.l.], v. 12, n. 3, mar. 2024. ISSN 2375-1924. Available at: <>. Date accessed: 13 apr. 2024. doi:
Research Articles


1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-E386. doi:10.1002/ijc.29210
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492
3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118-1127. doi:10.1056/NEJMra1001683
4. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology. 2001;34(6):1225-1241. doi:10.1053/jhep.2001.29760
5. Singal AG, Conjeevaram HS, Volk ML, Fu S, Fontana RJ, Askari F, Su GL, Lok AS. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 2010;30(1):37-47. doi:10.1111/j.1365-2036.2009.04044.x
6. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020-1022. doi:10.1002/hep.24199
7. Forner A, Reig M, Bruix J. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2018;47(1):97-104. doi:10.1002/hep.29420
8. Lee JM, Yoon JH, Joo I, Woo HS. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2015;1(4):435-443. doi:10.1001/jamaoncol.2015.1237
9. Gharib AM, Thomasson D, Li KC. Molecular imaging of hepatocellular carcinoma. Gastroenterology. 2004 Nov;127(5 Suppl 1):S153-8. doi: 10.1053/j.gastro.2004.09.029.
10. Melendez-Torres J, Singal AG. Early detection of hepatocellular carcinoma: roadmap for improvement. Expert Rev Anticancer Ther. 2022;22(6):621-632. doi:10.1080/14737140.2022.2070416
11. Committee on Diagnostic Error in Health Care; Board on Health Care Services; Institute of Medicine; The National Academies of Sciences, Engineering, and Medicine; Balogh EP, Miller BT, Ball JR, editors. Improving Diagnosis in Health Care. Washington (DC): National Academies Press (US); 2015 Dec 29. 2, The Diagnostic Process. doi:10.17226/21794
12. Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K. Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatol Commun. 2022;6(4):652-664. doi:10.1002/hep4.1828
13. Wang W, Wei C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis. 2020 Jan 27;7(3):308-319. doi:10.1016/j.gendis.2020.01.012
14. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010 Jul;65(7):500-16. doi:10.1016/j.crad.2010.01.013
15. Guan MC, Wang MD, Liu SY, Ouyang W, Liang L, Pawlik TM, Xu QR, Huang DS, Shen F, Zhu H, Yang T. Early diagnosis and therapeutic strategies for hepatocellular carcinoma: From bench to bedside. World J Gastrointest Oncol. 2021 Apr 15;13(4):197-215. doi:10.4251/wjgo.v13.i4.197
16. Singal AG, Yopp AC, Gupta S, Skinner CS, Halm EA, Okolo E, Nehra M, Lee WM, Marrero JA, Tiro JA. Hepatocellular Carcinoma Screening Practice Patterns in the Department of Veterans Affairs: Findings from a National Facility Survey. Dig Dis Sci. 2017 Oct;62(10):2701-2708. doi:10.1007/s10620-017-4681-5
17. Unoura M, Kaneko S, Matsushita E, Shimoda A, Takeuchi M, Adachi H, Kawai H, Urabe T, Yanagi M, Matsui O, et al. High-risk groups and screening strategies for early detection of hepatocellular carcinoma in patients with chronic liver disease. Hepatogastroenterology. 1993 Aug;40(4):305-10.
18. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008 May;134(6):1752-63. doi:10.1053/j.gastro.2008.02.090
19. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723-750. doi:10.1002/hep.29913
20. Bruix J, Sherman M. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J Hepatol. 2001 Sep;35(3):421-430. doi:10.1016/S0168-8278(01)00130-1
21. Jadvar H. Hepatocellular Carcinoma. PET Clin. 2011 Jan;6(1):1-13. doi:10.1016/j.cpet.2010.08.001
22. Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Naitou K, Ueda Y, Ouchi Y, Kanno S, Hatazawa J. Update on positron-emission tomography for hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2007 Dec;34(12):1925-1931. doi:10.1007/s00259-007-0470-6
23. Choi M, Lee KM. The role of PET/CT in the evaluation of patients with hepatocellular carcinoma. Oncology (Williston Park). 2011 Apr;25(4):365-370.
24. Li D, Wang Q, Yuan Z. Application of PET/CT in Hepatocellular Carcinoma. Front Oncol. 2019;9:804. doi:10.3389/fonc.2019.00804
25. Golfieri R, Renzulli M, Lucidi V, et al. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to Dynamic MRI in the detection of Hypovascular small (≤2 cm) HCC in cirrhosis. Eur Radiol. 2011;21(6):1233-1242. doi:10.1007/s00330-011-2061-3
26. Zhang W, Yu Y, Qiu Y, et al. Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma. Hepatology. 2019;57(2):832-839. doi:10.1002/hep.25950
27. Xue TC, Ge NL, Xu X, et al. Glypican-3 serves as a prognostic biomarker for the patients with hepatocellular carcinoma. Medicine (Baltimore). 2018 Jul;97(28):e11770. doi:10.1097/MD.0000000000011770
28. Nishida N, Kitano M, Sakurai T, Kudo M. Usefulness of Overexpression of Glypican-3 for Early Recurrence and Overall Survival after Surgery for Small Hepatocellular Carcinomas. Ann Surg Oncol. 2017 Dec;24(12):3706-3714. doi:10.1245/s10434-017-6021-2
29. Libbrecht L, Severi T, Cassiman D, Vander Borght S, Pirenne J, Nevens F, Verslype C, van Pelt J, Roskams T. Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol. 2006 Feb;30(2):140-144. doi:10.1097/01.pas.0000184822.73471.a1
30. Zhu AX, Borger DR, Kim Y, Cosgrove D, Ejaz A, Alexandrescu S, Groeschl RT, Deshpande V, Lindberg JM, Ferrone C, et al. Genomic Profiling of Hepatocellular Carcinoma in Patients Undergoing Liver Transplantation. Clin Cancer Res. 2019 Dec 1;27(23):5722-5732. doi:10.1158/1078-0432.CCR-19-0511
31. Kim HJ, Kim SY, Kim JH, Oh SC, Kim JS, Shin SW, Kim PN. Prognostic value of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer. 2019 Jan;19(1):877. doi:10.1186/s12885-019-6088-9
32. Chen Y, Yu DC, Charlton B, Henderson C, Buyse ME, Ma GL. Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis: Sonography, Percutaneous Aspiration, and Biopsy. Gastroenterology. 2019 Sep;157(3):730-732. doi:10.1053/j.gastro.2019.05.041
33. Zeng J, Liu Z, Sun Z, et al. Diagnostic accuracy of Gd-EOB-DTPA-MRI for the detection of hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY). 2020 Oct;45(10):3214-3224. doi:10.1007/s00261-020-02619-2
34. Murata Y, Honda H, Umakoshi H, et al. Simplified quantification of a simplified method in Mebrofenin hepatobiliary scintigraphy for the assessment of the severity of liver cirrhosis. Nucl Med Commun. 2002 Sep;23(9):825-832. doi:10.1097/00006231-200209000-00005
35. Ziessman HA, O'Malley JP, Thrall JH. Nuclear Medicine: The Requisites. Elsevier Health Sciences; 2013.
36. Ho CL, Yu SC, Yeung DW. 99mTc-Mebrofenin hepatobiliary scintigraphy in the assessment of functional hepatic reserve for orthotopic liver transplantation. Nucl Med Commun. 1998 Nov;19(11):1043-1048. doi:10.1097/00006231-199811000-00004
37. Dahlström N, Persson A, Almquist H, et al. SPECT/CT for Gastrointestinal Bleeding in Patients with an Obscure Gastrointestinal Bleeding. J Nucl Med. 2015 Jun;56(6):850-855. doi:10.2967/jnumed.115.158865
38. Ziessman HA. Mebrofenin Hepatobiliary Scintigraphy. Semin Nucl Med. 2010 Jul;40(4):236-250. doi:10.1053/j.semnuclmed.2010.02.002
39. Menezes LJ, Kotze A, McCarthy A, et al. 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT for the assessment of hepatic function and liver functional volume before hepatectomy. J Nucl Med. 2009 Mar;50(3):331-337. doi:10.2967/jnumed.108.056291
40. Levenson RB, Singh K, Novelline RA. Diagnostic Imaging: Gastrointestinal. Elsevier Health Sciences; 2011.
41. Khungar V, Sanchez MJ, Steele JL, Perumpail RB, Kumar S, Wong RJ, Ahmed A. A Guide to Hepatobiliary Scintigraphy in the Bariatric Patient. Radiographics. 2016 Nov;36(7):2046-2058. doi:10.1148/rg.2016160081
42. Ziessman HA, Thie JA, Brink JA. Hepatobiliary Scintigraphy. In: Clinical Hepatology. Springer, Cham; 2019. doi:10.1007/978-3-030-24832-1_8
43. Bushnell DL, O'Doherty MJ, O'Doherty MJ. Assessment of hepatic functional reserve using technetium-99m-mebrofenin hepatic extraction. J Nucl Med. 1995 Jan;36(1):62-66.
44. Ponto JA, Magnotta VA, Schindler MK, et al. Single photon emission computed tomography (SPECT) imaging for evaluation of patients with epilepsy. Curr Neurol Neurosci Rep. 2010 Jul;10(4):319-327. doi:10.1007/s11910-010-0110-3
45. Chua SC, Tan BS, Keng GH, et al. Single-photon emission computed tomography (SPECT) in central nervous system infections. Ann Nucl Med. 2018 Feb;32(2):110-116. doi:10.1007/s12149-017-1229-0
46. Taillefer R, Ahlberg AW, Masood Y. Myocardial perfusion imaging with 99mTc-sestamibi: Comparative analysis of available imaging protocols. J Nucl Cardiol. 2015 Jun;22(3):461-473. doi:10.1007/s12350-014-0037-z
47. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012 Feb;48(4):441-446. doi:10.1016/j.ejca.2011.11.036
48. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Jan;542(7639):115-118. doi:10.1038/nature21056
49. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012 Nov;30(9):1234-1248. doi:10.1016/j.mri.2012.06.010
50. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017 Dec;42:60-88. doi:10.1016/
51. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017 Nov 1;77(21):e104–e107. doi:10.1158/0008-5472.CAN-17-0339
52. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563-577. doi:10.1148/radiol.2015151169
53. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014 Jun;5:4006. doi:10.1038/ncomms5006
54. Yip SS, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol. 2017 Jun;61(13):R150-R166. doi:10.1088/1361-6560/aa7110
55. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer. Sci Rep. 2015 Jun;5:11044. doi:10.1038/srep11044
56. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001 May;23(1):89-109. doi:10.1016/s0933-3657(01)00077-x
57. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi:10.1038/nrclinonc.2017.141
58. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016 Dec;2(12):1636-1642. doi:10.1001/jamaoncol.2016.2631
59. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020 Jan;577(7788):89-94. doi:10.1038/s41586-019-1799-6
60. Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020 May;38(5):497-518. doi:10.1016/j.tibtech.2019.11.001
61. Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel). 2023 Aug 25;13(17):2760. doi:10.3390/diagnostics13172760
62. Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel). 2022 Dec 12;14(24):6123. doi:10.3390/cancers14246123
63. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001 Nov;219(2):316-333. doi:10.1148/radiology.219.2.r01ma19316
64. Kang KW, Chung JK. Theranostics and contrast agents for medical imaging. Curr Top Med Chem. 2012;13(4):446-457. doi:10.2174/1568026611203030446
65. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002 Sep;2(9):683-693. doi:10.1038/nrc882
66. Chen K, Chen X. Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol. 2011 Feb;38(1):70-86. doi:10.1053/j.seminoncol.2010.11.011
67. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001 May;42(5 Suppl):1S-93S. doi:10.1053/j.semnuclmed.2013.12.010
68. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2009 Mar;50(3):379-385.
69. Coleman RE, Hillner BE, Shields AF, et al. ACRIN Trial. J Nucl Med. 2007 Jan;48(1):1-58.
70. Lowe VJ, Dunphy FR, Varvares M, et al. NCI sponsored study of safety and effectiveness of PET/CT in evaluation of cancer (NCI 04-C-0282) [published correction appears in J Nucl Med. 2009 May;50(5):794]. J Nucl Med. 2009 Feb;50(2):340-345. doi:10.2967/jnumed.108.053785
71. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995 Jan;13(1):8-10. doi:10.1200/JCO.1995.13.1.8
72. Shayan G, Choi S, Amirfakhrian S, Yaghoubi M. The application of nanotechnology in the diagnosis and treatment of breast cancer. J Drug Deliv Sci Technol. 2020 Feb;59:101854. doi:10.1016/j.jddst.2020.101854
73. Yaghoubi M, Shayan G, Pourgholi F, Khoobi M, Asadi P, Rajabi AB, Akbarzadeh A. Nanoparticles in relation to peptide and protein aggregation. J Pharm Pharmacol. 2020 Nov;72(11):1506-1520. doi:10.1111/jphp.13376
74. Sengar M, Ireson R, Weng J, et al. A review on the advances in the synthesis of polymeric nanoparticles for the treatment of cancer. Polymers (Basel). 2019 Dec;11(2):304. doi:10.3390/polym11020304
75. Park K. The controlled clinical trials of nanomedicine in cardiovascular diseases. BioMed Res Int. 2018 Sep;2018:6306541. doi:10.1155/2018/6306541
76. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017 Dec;42(12):742-755. PMID: 29290745.
77. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015 Jan;115(1):327-394. doi:10.1021/cr300068p
78. Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011 Oct;44(10):1050-1060. doi:10.1021/ar200023c
79. Liapi E, Geschwind JF. Transcatheter and ablative therapeutic approaches for solid malignancies. J Clin Oncol. 2004 Aug;22(20):3823-3837. doi:10.1200/JCO.2004.05.192
80. Lencioni R, Cioni D, Crocetti L, Franchini C, Pina CD, Lera J, Bartolozzi C. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2004 Sep;234(3):961-967. doi:10.1148/radiol.2343031365
81. Gill J, Baiceanu A, Clark PJ, Langford A, Latiff J, Yang PM, Yoshida EM, Kanavos P. Insights into the hepatocellular carcinoma patient journey: results of the first global quality of life survey. Future Oncol. 2018 Jul;14(17):1701-1710. doi:10.2217/fon-2017-0647
82. Khan AS, Dageforde LA, Cholankeril G, et al. Non-invasive imaging criteria to predict hepatocellular carcinoma recurrence after liver transplantation: A systematic review and meta-analysis. Clin Transplant. 2019 Apr;33(4):e13515. doi:10.1111/ctr.13515
83. Llovet JM, Real MI, Montaña X, et al. Arterial embolization or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002 May;359(9319):1734-1739. doi:10.1016/s0140-6736(02)08649-x
84. Fowler KJ, Potretzke TA, Hope TA, Costa EA, Wilson SR. LI-RADS M (LR-M): definite or probable malignancy, not specific for hepatocellular carcinoma. Abdom Radiol (NY). 2017 Jun;42(6):1493-1500. doi:10.1007/s00261-017-1073-2
85. Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO. Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol. 2008 Jul;43(7):504-511. doi:10.1097/RLI.0b013e31817d99a1
86. Lee KH, Lee JM, Park JH, Kim JH, Kim SH, Han JK, Choi BI. MR imaging of hypervascular hepatic pseudolesions in the cirrhotic liver: the arterial-phase hypointense nodules seen on dynamic gadolinium-enhanced imaging. AJR Am J Roentgenol. 2012 Nov;199(5):1086-1094. doi:10.2214/AJR.11.8402
87. Leoni S, Piscaglia F, Granito A, et al. Characterization of primary and recurrent nodules in liver cirrhosis using contrast-enhanced ultrasound: which vascular criteria should be adopted? Ultraschall Med. 2016 Jun;37(3):286-292. doi:10.1055/s-0041-110246
88. Sandrasegaran K, Lin C, Akisik FM, Tahir B, Rajan J, Saxena R. The value of terlipressin in improving tumour visualisation by arterial phase MR imaging in patients with hepatocellular carcinoma: a retrospective study. Br J Radiol. 2015 May;88(1048):20140463. doi:10.1259/bjr.20140463
89. Gupta S, Bent S, Kohlwes J. Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med. 2003 Jul;139(1):46-50. doi:10.7326/0003-4819-139-1-200307010-00014
90. Colli A, Fraquelli M, Casazza G, Massironi S, Colucci A, Conte D, Duca P. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol. 2006 Mar;101(3):513-523. doi:10.1111/j.1572-0241.2006.00467.x
91. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs. computed tomography - a randomised study. Aliment Pharmacol Ther. 2005 Jan;21(1):81-89. doi:10.1111/j.0269-2813.2005.01310.x
92. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017 Sep;11(4):317-370. doi:10.1007/s12072-017-9799-9
93. Greten TF, Papendorf F, Bleck JS, et al. Survival rate in patients with hepatocellular carcinoma: a retrospective analysis of 389 patients. Br J Cancer. 2005 May;92(10):1862-1868. doi:10.1038/sj.bjc.6602523
94. Burrel M, Reig M, Bruix J. Survival of patients with hepatocellular carcinoma treated by transarterial chemoembolisation (TACE) using Drug Eluting Beads. Implications for clinical practice and trial design. J Hepatol. 2012 Jun;56(6):1330-1335. doi:10.1016/j.jhep.2012.01.008
95. Navin PJ, Venkatesh SK. Hepatocellular Carcinoma: State of the Art Imaging and Recent Advances. J Clin Transl Hepatol. 2019 Mar 28;7(1):72-85. doi:10.14218/JCTH.2019.00013
96. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018 Mar;391(10127):1301-1314. doi:10.1016/S0140-6736(18)30010-2
97. Sharma PS, Saindane AM. Standardizing Magnetic Resonance Imaging Protocols Across a Large Radiology Enterprise: Barriers and Solutions. Curr Probl Diagn Radiol. 2020 Sep-Oct;49(5):312-316. doi:10.1067/j.cpradiol.2020.05.005
98. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018 Jan;69(1):182-236. doi:10.1016/j.jhep.2018.03.019
99. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018 Jan;67(1):358-380. doi:10.1002/hep.29086
100. Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 2020 Feb;72(2):250-261. doi:10.1016/j.jhep.2019.09.021
101. Pinato DJ, Sharma R. An international perspective on hepatocellular carcinoma surveillance. Gastroenterology. 2019 May;156(5):1294-1296. doi:10.1053/j.gastro.2019.03.032
102. Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009 Sep;69(18):7385-7392. doi:10.1158/0008-5472.CAN-09-1089
103. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013 Mar;144(3):512-527. doi:10.1053/j.gastro.2012.12.011
104. Johnson PJ, Pirrie SJ, Cox TF, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomarkers Prev. 2014 Jan;23(1):144-153. doi:10.1158/1055-9965.EPI-13-0190
105. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology. 2017 Apr;152(4):745-761. doi:10.1053/j.gastro.2016.11.048
106. Finkelmeier F, Waidmann O, Trojan J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev Anticancer Ther. 2018 Dec;18(12):1169-1175. doi:10.1080/14737140.2018.1547121
107. Harding JJ, El Dika I, Abou-Alfa GK. Immunotherapy in hepatocellular carcinoma: Primed to make a difference? Cancer. 2018 Jul;124(14):2920-2926. doi:10.1002/cncr.31369
108. Shrestha R, Prithviraj P, Anaka M, et al. Monitoring Immune Checkpoint Regulators as Predictive Biomarkers in Hepatocellular Carcinoma. Front Oncol. 2016 Apr;6:91. doi:10.3389/fonc.2016.00091
109. Calvaruso V, Cabibbo G, Cacciola I, et al. Incidence of Hepatocellular Carcinoma in Patients With HCV-Associated Cirrhosis Treated with Direct-Acting Antiviral Agents. Gastroenterology. 2018 Aug;155(2):411-421. doi:10.1053/j.gastro.2018.04.008
110. Nahon P, Layese R, Bourcier V, et al. Incidence of Hepatocellular Carcinoma After Direct Antiviral Therapy for HCV in Patients with Cirrhosis Included in Surveillance Programs. Gastroenterology. 2018 Nov;155(5):1436-1450. doi:10.1053/j.gastro.2018.07.017
111. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017 Sep;11(4):317-370. doi:10.1007/s12072-017-9799-9
112. European Society of Radiology (ESR). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging. 2015 Apr;6(2):141-155. doi:10.1007/s13244-014-0364-y
113. Chavda VP, Balar PC, Patel SB. Interventional nanotheranostics in hepatocellular carcinoma. Nanotheranostics. 2023 Jan 9;7(2):128-141. doi:10.7150/ntno.70217
114. Curtis K, Fry M, Shaban RZ, Considine J. Translating research findings to clinical nursing practice. J Clin Nurs. 2017 Mar;26(5-6):862-872. doi:10.1111/jocn.13474
115. Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial Intelligence Applied to clinical trials: opportunities and challenges. Health Technol (Berl). 2023;13(2):203-213. doi:10.1007/s12553-022-00533-z
116. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken). 2023 Feb;6(2):e1764. doi:10.1002/cnr2.1764