Radiopharmaceutical Therapy: Strategy for Management to Optimize Patient Care – A Case Report

Main Article Content

Linda Ding, PhD Koren Smith, MS, MBA Matthew Iandoli, MS Fran Laurie, BS Carla Bradford, PhD Salvatore LaRosa, MS Abdulnasser Khalifeh, PhD Fenghong Liu, PhD I-Lin Kuo, PhD Muttasem Razzaq, MS Maryann Bishop-Jodoin, MEd Jacob Wood, BS Julia Hayden, BS Katherine Mackey, BS Yansong Geng, MS Shirin Sioshansi, MD Thomas J. FitzGerald


Radiopharmaceutical therapy directly targets radioactive drugs to cancer cells. Incorporating radiopharmaceutical therapy requires quantitative assessment of the radiation dose delivered to the cancer cells and surrounding normal tissue(s). This paper discusses the necessity of tumor and normal tissue dosimetry processes in radiopharmaceutical therapy and strategies to align this therapy within a patient’s care plan. We discuss a process to manage radiopharmaceutical therapy within institutions to ensure dose metrics can be incorporated into the care plan for review by participants in patient care.

Article Details

How to Cite
DING, Linda et al. Radiopharmaceutical Therapy: Strategy for Management to Optimize Patient Care – A Case Report. Medical Research Archives, [S.l.], v. 12, n. 4, apr. 2024. ISSN 2375-1924. Available at: <>. Date accessed: 27 may 2024. doi:
Research Articles


1. Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309(16):937-941. doi:10.1056/NEJM198310203091601.
2. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125-135. doi:10.1056/NEJMoa1607427.
3. Sandstrom M, Garske-Román U, Granberg D, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54(1):33-41. doi:10.2967/jnumed.112.107524.
4. Chicheportiche A, Ben-Haim S, Grozinsky-Glasberg S, et al. Dosimetry after peptide receptor radionucleotide therapy: impact of reduced number of post-treatment studies on absorbed dose calculation and on patient management. EJNMMI Phys. 2020;7(1):5. doi:10.1186/s40658-020-0273-8.
5. Kayano D, Kinuya S. Current consensus on I-131 MIBG therapy. Nucl Med Mol Imaging. 2018;52(4):254-265. doi:10.1007/s13139-018-0523-z.
6. Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomized open-label phase 2 trial. Lancet. 2021;397(10276):797-804. doi:10.1016/S0140-6736(21)00237-3.
7. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA 617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091-1103. doi:10.1056/NEJMoa2107322.
8. Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: Correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60(4):517-523. doi:10.2967/jnumed.118.219352.
9. Sandström M, Freedman N, Fröss-Baron K, Kahn T, Sundin A. Kidney dosimetry in 777 patients during 177Lu-Dotatate therapy: aspects on extrapolations and measurement time points. EJNMMI Phys. 2020;7(1):73. doi:10.1186/s40658-020-00339-2.
10. Pandit-Taskar N, O’Donoghue JA, Beylergil V, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014; 41(11):2093-2105. doi:10.1007/s00259-014-2830-7.
11. Wahl RL, Sgouros G, Iravani A, et al. Normal tissue tolerance to radiopharmaceutical therapies, the knowns and the unknowns. J Nucl Med. 2021;62(Suppl 3):23S-35S. doi:10.2967/jnumed.121.262751.
12. Dewaraja YK, Devasia T, Kaza RK, et al. Prediction of tumor control in 90Y radioembolization by logit models with PET/CT-based dose metrics. J Nucl Med. 2020;61(1):104-111. doi:10.2967/jnumed.119.226472.
13. Sgouros G, Dewaraja YK, Escorcia F, et al. Tumor response to radiopharmaceutical therapies: the knowns and the unknowns. J Nucl Med. 2021;62(Suppl 3):12S-22S. doi:10.2967/jnumed.121.262750.
14. Ding L, Sioshansi S, Malik H, et al. Yttrium-90 hepatic therapy and the increasing role of voxel-based post therapy dosimetry: a case report. Medical Research Archives. 2022;10(11). doi:10.18103/mra.v10i11.3379.
15. Ding L, Sioshansi S, Geng Y, et al Yttrium-90 hepatic therapy and the importance of voxel based post therapy dosimetry: a case report on renal radiation dose volume analysis with follow up. Medical Research Archives. 2024;12(2):
16. Wallner PE, Steinberg ML. Radiation oncologists and therapeutic radiopharmaceuticals: Will history repeat itself? Int J Radiat Oncol Biol Phys. 2023;115(5):1041-1043. doi:10.1016/j.ijrobp.2022.11.043.
17. Beckta JM, Patel RB, White GA, Boike T, Escorcia FE. Radiation oncologists and radiopharmaceutical therapy: Strategies for addressing fair compensation. Pract Radiat Onc. 2023;13(6):496-498. doi 10.1016/j.prro.2023.08.002.
18. Shukla U, Chowdhury IH, Beckta JM, et al. Unsealed source: Scope of practice for radiopharmaceuticals among United States radiation oncologists. Adv Radiat Oncol. 2021;7(5) 100827. doi:10.1016/j.adro.2021.100827.
19. Buatti JM, Pryma DA, Kiess AP, et al. A framework for patient-centered pathways of care for radiopharmaceutical therapy: An ASTRO consensus document. Int J Radiat Oncol Biol Phys. 2021;109(4):913-922. doi:10.1016/j.ijrobp.2020.11.048.
20. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19(9):589-608. doi:10.1038/s41573-020-0073-9.
21. Divgi C, Carrasquillo JA, Meredith R, et al. Overcoming barriers to radiopharmaceutical therapy (RPT): An overview from the NRG-NCI Working Group on Dosimetry for Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):905-912. doi:10.1016/j.ijrobp.2020.12.002.
22. Turck R. Radio-pharmaceuticals for cancer treatment: are they ready for prime time yet? Ann Oncol. 2018;29(7):1594-1597. doi:10.1093/annonc/mdy142.
23. Xiao Y, Roncali E, Hobbs R, et al. Toward individualized voxel-level dosimetry for radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):902-904. doi:10.1016/j.ijrobp.2020.08.026.
24. Goetz TI, Lang EW, Prante O, et al. Three-dimensional Monte Carlo-based voxel-wise tumor dosimetry in patients with neuroendocrine tumors who underwent 177Lu-DOTATOC therapy. Ann Nucl Med. 2020;34(4):244-253. doi:10.1007/s12149-020-01440-3.
25. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective randomized multicentre study. Lancet. 2020;395(10231):1208-1216. doi:10.1016/S0140-6736(20)30314-7.
26. Michalski JM. Chair Update - Moving forward for the benefit of our patients: a collaborative opportunity for radiopharmaceutical therapy. ASTROnews. Winter 2024. 27(1):3.
27. Kendi AT, Moncayo VM, Nye JA, et al. Radionuclide therapies in molecular imaging and precision medicine. PET Clin. 2017;12:93-103. doi:10.1016/j.cpet.2016.08.006.
28. Bertolet A, Ramos-Méndez J, Paganetti H, Shuemann J. The relation between microdosimetry and induction of direct damage to DNA by alpha particles. Phys Med Biol. 2021;66:155016. doi:10.1088/1361-6560/ac15a5.
29. Ahenkorah S, Cassells I, Deroose CM, et al. Bismuth-213 for targeted radionuclide therapy: From atom to bedside. Pharmaceutics. 2021;13:599. doi:10.3390/pharmaceutics13050599.
30. Pandit-Taskar N. Targeted radioimmunotherapy and theranostics with alpha emitters. J Med Imaging Radiat Sci. 2019;50:S41-S44. doi:10.1016/j.jmir.2019.07.006.
31. Lunger L, Tauber R, Feuerecker B, Gschwend JE, Eiber M, Heck MM. Narrative review: prostate-specific membrane antigen-radioligand therapy in metastatic castration-resistant prostate cancer. Transl Androl Urol. 2021;3963-3971. doi:10.21037/tau-20-1135.
32. Widel M. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy? Neoplasma. 2017;64:641-654. doi:10.4149/neo_2017_501.
33. Kirsch DG, Diehn M, Kesarwala AH, et al. The future of radiobiology. J Natl Cancer Inst. 2018;110:329-340. doi:10.1093/jnci/djx231.
34. Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep. 2019;9:14346. doi:10.1038/s41598-019-50861-2.
35. Koziorowski J, Ballinger J. Theragnostic radionuclides: a clinical perspective. Q J Nucl Med Mol Imaging. 2021;65:310-314. doi:10.23736/S1824-4785.21.03424-5.
36. Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol. 2016;92:173-186. doi:10.3109/09553002.2016.1144944.
37. Herrmann K, Schwaiger M, Lewis JS, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21:e146-e156. doi:10.1016/S1470-2045(19)30821-6.
38. Elliyanti A. Radiopharmaceuticals in modern cancer therapy. In: Bardria FA, ed: Radiopharmaceuticals - Current Research for Better Diagnosis and Therapy. 1st ed. IntechOpen; 2022:1-15. doi:5772/intechopen.99334.
39. Goldsmith SJ. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med. 2020;50:87-97. doi:10.1053/j.semnuclmed.2019.07.006.
40. Kramer-Marek G, Capala J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 2012;33:629-640. doi:10.1007/s13277-012-0373-8.