CLX-155: A Novel, Oral 5-FU Prodrug Displaying Antitumor Activity in Human Colon Cancer Xenograft Model in Nude Mice

Main Article Content

Natasha Boyette Ava Dalton Yearam Tak Sophie Kang Subbu Apparsundaram Mahesh Kandula John York


Introduction: Capecitabine is an oral prodrug of 5-FU, which interpatient pharmacokinetic (PK) variability related to liver function and severe adverse events (e.g., hand-foot syndrome, myelosuppression, and neurotoxicity) limits. CLX-155 is a novel oral 5’-DFCR prodrug involving 5’-DFCR as an intermediate for generating 5-FU, unlike capecitabine, which the liver does not metabolize. This study addresses the following research question: what is the activity of CLX-155 in a human colon cancer xenograft model in nude mice?

Methods: This study involved 50 Foxn1 athymic nude female mice implanted with the human colon cancer cell line HCT116 (5 million cells per site). Investigators randomized animals into five treatment groups (N = 10): vehicle control, CLX-155 at doses of 125, 250, and 500 mg/kg/day, or capecitabine 1000 mg/kg/day. Animals received oral treatment once daily for five days a week with two days off for a total of three consecutive weeks. Investigators evaluated treatment toxicity based on body weight loss. Calculations for tumor growth inhibition involved comparing changes in tumor volume on a given day to tumor volumes on Day 1.

Results: CLX-155 demonstrated statistically significant, dose-dependent tumor growth inhibition at all doses compared to vehicle control (p<0.0001). Tumor growth inhibition at Day 15 for CLX-155 treatment groups of 125, 250, and 500 mg/kg/day was 57.8%, 70.4%, and 90.6% respectively. Two animals in the CLX-155 500 mg/kg/day treatment group experienced complete tumor regression, and all animals in the CLX-155 treatment groups survived. Two animals in the CLX-155 250 and 500 mg/kg/day dosing groups experienced a decrease in body weight. In contrast, two mice in the capecitabine group exhibited clinical signs of hunchback and scaly skin, progressive weight loss, and eventual death.

Conclusion: CLX-155 demonstrated comparable tumor growth inhibition to capecitabine but at a lower dose, suggesting increased potency. In addition, CLX-155 exhibited improved tolerability and fewer adverse effects. These promising results support further investigation in Phase 1 clinical trials for managing colon cancer.

Keywords: Colon cancer, CLX-155, 5-FU prodrug, Xenograft, Preclinical activity, Antimetabolite

Article Details

How to Cite
BOYETTE, Natasha et al. CLX-155: A Novel, Oral 5-FU Prodrug Displaying Antitumor Activity in Human Colon Cancer Xenograft Model in Nude Mice. Medical Research Archives, [S.l.], v. 12, n. 6, june 2024. ISSN 2375-1924. Available at: <>. Date accessed: 22 july 2024. doi:
Research Articles


1. Kim KW, Roh JK, Wee HJ, Kim C. Antimetabolic Anticancer Drugs. In: Cancer Drug Discovery. Springer Netherlands; 2016:95-112. Doi:10.1007/978-94-024-0844-7_5
2. Drug Summary. Accessed October 21, 2023.
3. Walko CM, Lindley C. Capecitabine: A Review. Clin Ther. 2005;27(1). Doi:10.1016/j.clinthera
4. Miura K, Kinouchi M, Ishida K, et al. 5-FU Metabolism in Cancer and Orally-Administrable 5-FU Drugs. Cancers (Basel). 2010;2(3):1717-1730. Doi:10.3390/cancers2031717
5. Reigner B, Blesch K, Weidekamm E. Clinical Pharmacokinetics of Capecitabine. Clin Pharmacokinet. 2001;40(2):85-104. Doi:10.2165/00003088-200140020-00002
6. Visacri MB, Duarte NC, Lima T de M, et al. Adverse reactions and adherence to capecitabine: A prospective study in patients with gastrointestinal cancer. J Oncol Pharm Pract. 2022;28(2):326-336. Doi:10.1177/1078155221989420
7. FDA. XELODA (Capecitabine) Package Insert.; 2015.
8. Kobashi N, Matsumoto H, Zhao S, et al. The Thymidine Phosphorylase Imaging Agent 123I-IIMU Predicts the Efficacy of Capecitabine. J Nucl Med. 2016;57(8):1276-1281. Doi:10.2967/jnumed.115.165811
9. Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol. 2020;871:172937. Doi:10.1016/j.ejphar.2020.172937
10. Ackler S, Mitten MJ, Chen J, et al. Navitoclax (ABT-263) and bendamustine ± rituximab induce enhanced killing of non-Hodgkin's lymphoma tumors in vivo. Br J Pharmacol. 2012;167(4):881-891.
11. Rajput A, Dominguez San Martin I, Rose R, et al. Characterization of HCT116 human colon cancer cells in an orthotopic model. J Surg Res. 2008;147(2):276-281. Doi:10.1016/j.jss.2007.04.021
12. De Angelis PM, Kravik KL, Tunheim SH, Haug T, Reichelt WH. Comparison of gene expression in HCT116 treatment derivatives generated by two different 5-fluorouracil exposure protocols. Mol Cancer. 2004;3:11. Published 2004 April 26. Doi:10.1186/1476-4598-3-11
13. Guo J, Zhou AW, Fu YC, et al. Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharmacol Sin. 2006;27:1375-1381. Doi:10.1111/j.1745-7254.2006.00421.x
14. Ishikawa T, Fukase Y, Yamamoto T, Sekiguchi F, Ishitsuka H. Antitumor activities of a novel fluoropyrimidine, N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine (capecitabine). Biol Pharm Bull. 1998;21:713-717. Doi:10.1248/bpb.21.713
15. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H. Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res. 1998;58(4):685-690.
16. Miwa M, Ura M, Nishida M, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumors by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34(8):1274-1281. Doi:10.1016/s0959-8049(98)00058-6
17. Ishitsuka H. Capecitabine: preclinical pharmacology studies. Invest New Drugs. 2000; 18(4):343-354. Doi:10.1023/a:1006497231579
18. Ishikawa T, Utoh M, Sawada N, et al. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem Pharmacol. 1998;55(7):1091-1097. Doi:10.1016/s0006-2952(97)00682-5
19. Harada K, Ferdous T, Ueyama Y. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer. Jpn Dent Sci Rev. 2017 Aug;53(3):61-77.
Doi: 10.1016/j.jdsr.2016.11.001. Epub 2016 December 19. PMID: 28725297; PMCID: PMC5501734.
20. Calabro-Jones P.M., Byfield J.E., Ward J.F., Sharp T.R. Time-dose relationships for 5-fluorouracil cytotoxicity against human epithelial cancer cells in vitro. Cancer Res. 1982;42:4413–4420.
21. Richard M. Hansen, Louise Ryan, Tom Anderson, Beth Krzywda, Edward Quebbeman, Al Benson, Daniel G. Haller, Douglass C. Tormey, Phase III Study of Bolus Versus Infusion Fluorouracil With or Without Cisplatin in Advanced Colorectal Cancer, JNCI: Journal of the National Cancer Institute, Volume 88, Issue 10, May 15 1996, Pages 668–674,
22. Schüller J, Cassidy J, Dumont E, et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol. 2000;45:291-297. Doi:10.1007/s002800050043
23. Lan MJ, Yao DF, Zhu LL, Zhou Q. The Rate of Infusion Represents an Important Aspect of Administering Anticancer Agents. Risk Manag Health Policy. 2023;16:2531-2541. Published 2023 November 22. Doi:10.2147/RMHP.S442692
24. Narayanan A, Baskaran SA, Amalaradjou MA, Venkitanarayanan K. Anticarcinogenic proper-ties of medium chain fatty acids on human colo-rectal, skin and breast cancer cells in vitro. Int J Mol Sci. 2015;16:5014-5027. Doi:10.3390/ijms16035014
25. Tao XM, Wang JC, Wang JB, et al. Enhanced anticancer activity of gemcitabine coupling with conjugated linoleic acid against human breast cancer in vitro and in vivo. Eur J Pharm Biopharm. 2012;82:401-409. Doi:10.1016/j.ejpb.2012.06.007
26. Neto Í, Rocha J, Gaspar MM, Reis CP. Experi-mental Murine Models for Colorectal Cancer Re¬search. Cancers (Basel). 2023;15. Doi: 10.3390/cancers15092570