Hormone Metabolites and Herbal Bioactive Agents: Potential Drug Candidates for the Luminal A Breast Cancer subtype

Main Article Content

Nitin T. Telang

Abstract

Background: Hormone receptor positive, human epidermal growth factor receptor negative Luminal A breast cancer subtype responds to targeted endocrine therapy, signal transduction inhibitors and cyclin dependent kinase inhibitors. Estrogen and progesterone receptor mediated signal transduction involves receptor-DNA binding and transcriptional activation of downstream target genes. In addition to hormone receptor signaling, cellular metabolism of estradiol and progesterone exhibit distinct roles in cancer growth modulation. Targeted therapy is associated with systemic toxicity, therapy resistance and emergence of chemo-resistant cancer initiating stem cells. These limitations emphasize identification of testable drug candidates for therapy resistant breast cancer. Cellular metabolism of ovarian steroid hormones generates oxidative metabolites with distinct growth modulating effects. Anti-proliferative metabolites may represent potential drug candidates.


Objectives: The objectives of the present review are to provide i) Systematic discussion of published evidence relevant to the role of ovarian steroid hormone metabolism in growth modulatory effects on cancer progression, ii) Evidence for applicability of Luminal A breast cancer and drug-resistant cancer stem cell models to identify mechanistic leads for efficacy of anti-proliferative hormone metabolites, and iii) Future research directions for clinical translatability of patient derived preclinical data.


Conclusions: Contrasting growth modulatory effects ovarian steroid hormones, anti-proliferative effects of individual metabolites of ovarian steroid hormones, growth inhibitory efficacy of nutritional herbs via altered cellular metabolism of estradiol and development of drug-resistant cancer stem cell model represent salient features of this review. Collectively, present evidence validates experimental approaches to identify growth inhibitory hormone metabolites and bioactive agent from nutritional herbs as potential drug candidates for therapy-resistant breast cancer.        


Future Research: This review provides a rationale for future investigations to evaluate stem cell targeted efficacy of anti-proliferative hormone metabolites and herbal bioactive agents. These directions may include functional significance of estrogen receptor-β, and telomerase expression. Furthermore, investigations using patient-derived tumor explant and tumor organoid models from therapy-resistant breast cancer may facilitate experimental approaches to expand preclinical evidence for its clinical relevance and translational potential.


 

Article Details

How to Cite
TELANG, Nitin T.. Hormone Metabolites and Herbal Bioactive Agents: Potential Drug Candidates for the Luminal A Breast Cancer subtype. Medical Research Archives, [S.l.], v. 12, n. 3, apr. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5231>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v12i3.5231.
Section
Review Articles

References

1. Sorlie t, Perou CM, Tibshirani R: et al: Gene expression patterns of breast carcinoma distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98 (19):10869-10874. Doi:10.1073/pnas.191367098.
2. Gradishar WJ, Moran MS, Abraham J: NCCN Clinical Practice Guidelines in Oncology: Breast Cancer version 4, 2022. http://www.nccn.org
3. Moy B, Goss PE: Estrogen receptor pathway: Resistance to endocrine therapy and new therapeutic approaches. Clin. Cancer. Res. 2006, 12 (16): 4790-4793. Doi: 10.1158/1078-0432. CCR-06-1535.
4. Brisken C: Progesterone signaling in breast cancer: A neglected hormone coming in to limelight. Nat. Rev. Cancer 2013, 13: 385-396. Doi: 10.1038/nrc3518.
5. Yoldi G, Pellegrini P, Trinidad EM, et al: RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res. 2016, 76: 5857-5869. Doi: 10.1158/0008-5472.CAN-15-2745.
6. Santen RJ, Yue W, Wang J-P: Estrogen metabolites and breast cancer. Steroids 2015, 99 (Part A): 61-66. Doi: 10.1016/j.steroids.2014. 08.003.
7. Carroll JS, Hickey TE, Tarulli GA, et al: Deciphering the divergent role of progestogens in breast cancer. Nat. Rev. Cancer 2017, 17: 54-64. Doi: 10.1038/nrc.2016.116.
8. Cenciaririi ME, Proietti CJ: Molecular mechanisms underlying progesterone receptor action in breast cancer: insights into cell proliferation and stem cell regulation. Steroids 2019, 152: 108503. Doi: 10.1016/j.steroids.2019.108503.
9. Wiebe JP, Beausoleil M, Zhang G, et al: Opposing actions of the progesterone metabolites 5α-dihydro progesterone (5α-P) and 3α-dihydro progesterone (3α-P) on mitosis, apoptosis and expression of BCL-2, BAX and p21 in human breast call lines. J. Steroid Biochem. Mol. Biol. 2010, 118: 125-132. Doi: 10.1016/j.jsbmb.2009.11.005.
10. Telang: Stem cell models for cancer therapy. Int. J. Mol. Sci. 2022, 23:7055. Doi: https:// doi.org/10.3390/ijms23137055.
11. Dey P, Rathod M, De A: Targeting stem cells in the realm of drug resistant breast cancer. Breast Cancer (Dove Med. Press) 2019, 11: 115-135. Doi: 10.2147/BCTT.S189224.
12. Telang N, Li G, Katdare M, et al: Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function. Oncol. Lett. 2016, 12: 3949-3957. Doi: 10.3892/ol.2016.5197.
13. Gupta M, McDougal M, Safe S: Estrogenic and anti-estrogenic activities of 16α- and 2-hyroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells J. Steroid Biochem. Mol. Biol. 1998, 67 95-6):413-419. Doi: 10.1016/s0960-0760(98)00135-6.
14. Suto A, Telang NT, Tanino H, et al: In vitro and in vivo modulation of growth regulation in the human breast cancer cell line MCF-7 by estradiol metabolites. Breast Cancer 1999, 6(2): 87-92. Doi: 10.1007/BFO2966913.
15. Swarbrick A, Lee CS, Sutherland RL, Musgrove EA: Co-operation of p27KIP1 and p18 INK4c in progestin mediated cell cycle arrest in T47D breast cancer cells. Mol. Cell. Biol. 2000, 20: 2581-2591. Doi: 10.1128/MCB.20.7.2581-2591.2000.
16. Telang NT: The divergent effects of ovarian steroid hormones in the MCF-7 model for Luminal A breast cancer: Mechanistic leads for therapy. Int. J. Mol. Sci. 2022, 23:4800. Doi: 10.3390/ijms23094800.
17. Wiebe JP: Progesterone metabolites in breast cancer. Endocr.-Relat. Cancer 2006, 13: 717-738. Doi: 10.1677/erc.1.01010.
18. Gompel A, Somai S, Chaouat M, et al: Hormonal regulation of apoptosis in breast cells and tissues. Steroids 2000, 65: 593-598. Doi: 10.1016/s0039-128 x (00)00172-0.
19. Recouvreux MS, Bessone MID, Taruselli A, et al: Alterations in progesterone receptor isoform balance in normal and neoplastic breast cells modulates the stem cell population. Cells 2020, 9: 2074.
20. Hong M, Tan HY, Li S, et al: The potential targets of Chinese medicines and their active compounds. Int. J. Mol. Sci. 2016, 17: 893.
21. Ye J, Jia Y, JI K-E, et al: Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol. Lett. 2015, 10: 1240-1250. Doi: 10.3892/ol.2015.3459.
22. Telang N: Drug-resistant stem cell models for the hormone-responsive Luminal A breast cancer. Med. Res. Arch. 2023, 11: 3556. Doi: https:// doi.org/10.18103/mra.v11i2.3556.
23. Park H, Zhu West JA, et al: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451 (7175): 141-146. Doi: 10.1038/nature 06534.
24. Yu J, Hu K, Smuga-Otto K, et al: Human induced pluripotent cells free of vector and transgene sequences. Science 2009, 324 (5928): 797-801. Doi: 10.1126/science. 1172482
25. Kuipper GG, Lemmen JG, Carlson B, et al: Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139: 4252-4263. Doi: 10.1210/endo.139.10.6216.
26. Kostelac D, Rechkemmer G, Breviba K: Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. 2003, J. Agric Chem. 51: 7632-7635. Doi: 10.1021/jf034427b.
27. Hannen R, Bartsch JW: Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018, 592: 2023-2031. Doi: 10.1002/1873-3468.13084.
28. Relitti N, Saraswati AP, Frederico S, et al: Telomerase-based cancer therapeutics: A review on their clinical trials. Curr Top Med Chem. 2020, 20: 4330-457. Doi: 10.2174/1568026620666200 102 104930.
29. Fragiadaki P, Ranieri E, Kalliantasi K, et al: Telomerase inhibition and activation: A systematic review. Mol. Med. Rep. 2022, 25 ((5):158. Doi: 10.3892/mmr.2022.12674.
30. Genaesan K, Xu B: Telomerase inhibitors from natural products and their anti-cancer potential. Int. J. Mol. Sci. 2017, 19: 13. Doi: 10.3390/ijms190100 13.
31. Bruna A, Rueda OM, Greenwood W, et al: A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anti-cancer compounds. Cell 2016, 167 (1): 260-274. Doi: 10.1016/j.cell.2016.08.041.
32. Drost J, Clevers H: Organoids in cancer research. Nat. Rev. Cancer 2018, 18 (7): 407-418. Doi: 10.1038/s41568-018-0007-6.
33. Pan B, Zhaou D, Liu Y, et al: Breast cancer organoids from malignant plural effusion-derived tumor cells as an individualized medicine platform. In vitro Cell Dev Biol. Anim. 2021, 57: 510-518. DIO: 10.1007/s11626-021-00563-9.
34. Pan B, Li X, Zhao D, et al: Optimizing individualized treatment strategy based on breast cancer organoid model. Clin Transl. Med. 2021, 11: e380. Doi: 10.1002/ctm2.380.
35. Ye H-S, Zhou D, Li H, et al: Organoid forming potential as complementary parameter for accurate evaluation of breast cancer neoadjuvant therapeutic efficacy. Br J Cancer 2024. Online ahead of print. Doi: 10.1038/s41416-024-0595-w.