Echocardiographic assessment of morphofunctional and hemodynamic changes of rheumatic mitral valve dysfunction in the young. Morphological changes in rheumatic valve lesions

Main Article Content

Cleonice de Carvalho Coelho Mota http://orcid.org/0000-0003-4941-328X Carolina Andrade Bragança Capuruço http://orcid.org/0000-0002-5022-0728 Lícia Campos Valadares Alan Alvarez Conde Vera Demarchi Aiello http://orcid.org/0000-0002-4185-9423

Abstract

Background- Rheumatic fever and its sequel rheumatic heart disease remain a major health problem across the globe. This investigation aims to analyse the mitral valve morphofunctional changes, stratified by severity, and the magnitude of the mitral regurgitation and stenosis through a simplified echocardiographic scoring system in patients with rheumatic heart disease.


Methods- As cross-sectional echocardiographic study was carried out in 98 consecutive patients with confirmed rheumatic heart disease. Patients undergoing outpatient clinical care over an 18-month period (mean follow-up period of 9,7±2,9 years) were selected for echocardiographic investigation. After a double-blind echocardiograms review, the inter-rater reliability was calculated (Kappa=0.875 (0.775- 0.974; CI 95%). The morphofunctional data of mitral apparatus were scored on a rating scale from one to fifteen, encompassing three categories (1-5: mild; 6-10: moderate; 10-15: severe) to quantify the degrees of severity. Pearson's Chi-squared test with Yates' continuity correction were performed for comparative analysis and the Wilcoxon test and the Cliff's Delta effect size was calculated to examine differences related to morphological features.


Results- The majority of patients had rheumatic heart disease with clinical evidence and twenty patients (20,4%) had subclinical disease.The thickening of both mitral valve leaflets and the restrictive motion of the posterior leaflet were most frequently found in contrast with the low percentage of chordal and/or commissural fusion. The degree of the anterior mitral valve leaflet thickening was proportional to the magnitude of the mitral valve regurgitation (p=0.021). The higher degrees of mitral valve dysfunction were associated with more severe carditis (mitral valve regurgitation, p: 0.000; mitral valve stenosis, p: 0.031). No association was found between the severity of valvular lesions and patient age or length of the disease (p=0.320). The presence of beading was only observed in the acute phase (p=0,000); coaptation defect of the mitral valve was associated with significant left ventricle enlargement (p=0.000). The morphofunctional score of mitral apparatus, stratified by severity, was associated with the magnitude of mitral valve regurgitation (p=0,000) and of mitral valve stenosis (p=0,031) also quantified by severity. The highest scores were observed in patients with the most severe degrees of carditis (p=0,000); however, no association was found with either, the patients’ age (p=0.373) or the duration of the disease (p=0.361).


Conclusions- In the analysis of severity of the mitral apparatus deformities and the resulting valve dysfunction, the morphofunctional score stratification was highly associated with the magnitude of mitral regurgitation and stenosis. In this young cohort, the higher scores were associated to severe carditis, but not to the patients’ age or the duration of the disease. Taking into account the low prevalence of severe valve dysfunctions, these results highlight the importance of early intervention and adequate prevention.

Keywords: rheumatic heart disease, acute rheumatic fever, screening, echocardiography, valve dysfunction

Article Details

How to Cite
MOTA, Cleonice de Carvalho Coelho et al. Echocardiographic assessment of morphofunctional and hemodynamic changes of rheumatic mitral valve dysfunction in the young.. Medical Research Archives, [S.l.], v. 12, n. 3, mar. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5236>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.18103/mra.v12i3.5236.
Section
Research Articles

References

1. Mota CC. Pediatric cardiology in the 21st century: advances and challenges. Editorial. Birth and Growth Medical Journal 2019;28(4): 174-178. doi:10.25753/BirthGrowthMJ.v28.i4.19085.

2. Murray, C.J.L. and Lopez, A.D. (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard School of Public Health, Boston.

3. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LMO et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(2 5):2982-3021. doi:10.1016/j.jacc.2020.11.010.

4. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G et al. Global, regional, and national burden of rheumatic heart disease, 1990-2015. N Engl J Med. 2017;377(8):713–722. doi: 10.1056/NEJ Moa1603693.

5. Zühlke L, Karthikeyan G, Engel ME et al. Clinical Outcomes in 3343 Children and Adults With Rheumatic Heart Disease From 14 Low- and Middle-Income Countries: Two-Year Follow-Up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation. 2016 Nov 8;134(19):1456-1466. doi: 10.1161/CIRCULATIONAHA.116.024769

6. Lawrence JG, Carapetis JR, Griffiths K, Edwards KJ Condon JR. Acute rheumatic fever and rheumatic heart disease: incidence and progression in the Northern Territory of Australia, 1997 to 2010. Circulation. 2013;128 (5):492–501. doi: 10.1161/CIRCULATIONAHA .113.001477.

7. Cannon J, Roberts K, Milne C, Carapetis JR. Rheumatic Heart Disease Severity, Progression and Outcomes: A Multi-State Model. J Am Heart Assoc. 2017;2;6(3):e00349 8. doi: 10.1161/JAHA.116.003498.

8. Meira ZM, Goulart EM, Colosimo EA, Mota CC. Long term follow up of rheumatic fever and predictors of severe rheumatic valvar disease in Brazilian children and adolescents. Heart. 2005; Aug;91(8):1019-22. doi: 10.1136 /hrt.2004.042762.

9. Rothenbühler M, O’Sullivan CJ, Stortecky S, Stefanini GG, Spitzer E, Estill J et al. Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents. Lancet Glob Health. 2014;2 (2):e717–e726. doi: 10.1016/S2214-109X(14) 70310-9.

10. Kumar RK, Antunes MJ, Beaton A, Mirabel M, Nkomo VT, Okello E et al; on behalf of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Contemporary diagnosis and management of rheumatic heart disease: implications for closing the gap: a scientific statement from the American Heart Association. Circulation. 2020;142(20):e 337–e357. doi:10.1161/CIR.00000000000009 21. Erratum in: Circulation. 2021;143(23):e102 5-e1026.

11. Rwebembera J, Marangou J, Mwita JC, Mocumbi AO, Mota C, Okello E et al. 2023 World Heart Federation guidelines for the echocardiographic diagnosis of rheumatic heart disease. Nat Rev Cardiol. 2023 Nov 2. doi: 10.1038/s41569-023-00940-9.

12. Smith SC Jr, Collins A, Ferrari R, Holmes DR Jr, Logstrup S, McGhie DV, Ralston J, Sacco RL, Stam H, Taubert K, Wood DA, Zoghbi WA; World Heart Federation; American Heart Association; American College of Cardiology Foundation; European Heart Network; European Society of Cardiology. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol. 2012;4;60(22):2343-8. doi: 10.1016/j. jacc.2012.08.962.

13. Mota CC, Meira ZM, Graciano RN, Graciano FF, Araújo FD. Rheumatic fever prevention program: long-term evolution and outcomes. Front Pediatr. 2015;2:e141. doi: 10.3389/fped.2014.00141.

14. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J et al; on behalf of the American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young. Revision of the Jones criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation.2 015;131(20):1806-1818. doi: 10.1161/CIR.000 0000000000205. Erratum in: Circulation. 2020 Jul 28;142(4):e65.

15. Mota CCC, Aiello VD, Anderson, RH. Rheumatic Heart Disease. In: Anderson RH, Baker EJ, Penny DJ, Redington AN, Rigby ML, Wernovsky G. Paediatric Cardiology. 3ed.Phil adelphia:Churchill Livingstone/Elsevier; 2010, 1091-1134.

16. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al. Recommendations for non-invasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017; 30( 4):303-371. doi: 10.1016/j.echo.2017.01.007.

17. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Fleisher L A et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(25):e1159-1195. doi: 10.1161/CIR.0 000000000000503.

18. Tadele, H, Mekonnen, W, Tefera, E. Rheumatic mitral stenosis in children: more accelerated course in sub-Saharan patients. BMC Cardiovasc Disord. 2013;13:95. doi.org/ 10.1186/1471-2261-13-95.

19. Lubega S, Aliku T, Lwabi P. Echocardiographic pattern and severity of valve dysfunction in children with rheumatic heart disease seen at Uganda Heart Institute, Mulago hospital. Afr Health Sci. 2014;14(3):61 7-625. doi: 10.4314/ahs.v14i3.17.

20. Chockalingam A, Gnanavelu G, Elangovan S, Chockalingam V. Clinical spectrum of chronic rheumatic heart disease in India. J Heart Valve Dis. 2003;12(5):577-581.

21. Nordet P, Lopez R, Dueñas A, Sarmiento L. Prevention and control of rheumatic fever and rheumatic heart disease: the Cuban experience (1986-1996-2002). Cardiovasc J Afr. 2008;19(3):135-40. url: api.semanticschol ar.org/CorpusID:11457854.

22. Torres RPA, Torres RFA, Crombrugghe G, Moraes da Silva SP, Cordeiro SLV, Bosi et al. Improvement of rheumatic valvular heart disease in patients undergoing prolonged antibiotic prophylaxis. Front Cardiovasc Med. 2021;8:e676098. doi:0.3389/fcvm.2021.676098.

23. Beaton A, Okello E, Rwebembera J, Grobler A, Engelman D, Alepere J E AL. Secondary antibiotic prophylaxis for latent rheumatic heart disease. N Engl J Med. 2022; 386(3):230-240. doi: 10.1056/NEJMoa2102074.

24. Remenyi B, Carapetis J, Stirling JW, Ferreira B, Kumar K, Lawrenson J et al. Inter-rater and intra-rater reliability and agreement of echocardiographic diagnosis of rheumatic heart disease using the World Heart Federation evidence based criteria. Heart Asia. 2019;11(2):e011233. doi:10.1136/hearta sia-2019-011233.

25. Beaton A, Aliku T, Dewyer A, Jacobs M, Jiang J, Longenecker CT et al. Latent Rheumatic heart disease: identifying the children at highest risk of unfavorable outcome. Circulation. 2017; 136(23):2233-2244. doi:10.1161/CIRCULATIONAHA.117.029936.

26. Noubiap JJ, Agbor VN, Bigna JJ et al. Prevalence and progression of rheumatic heart disease: a global systematic review and meta-analysis of population- based echocardiographic studies. Sci Rep. 2019;9(1) :e17022. doi:10.1038/s4159 8-019-53540-4.

27. Nascimento BR, Nunes MCP, Lima EM, San Noubiap JJ, Agbor VN, Bigna et al. Programa de Rastreamento da Valvopatia Reumática (PROVAR) Investigators [Link]. Outcomes of echocardiography-detected rheumatic heart disease: validating a simplified score in cohorts from different countries. J Am Heart Assoc. 2021;10(18):e02 1622. doi: 10.1161/JAHA.121.021622.

28. Zuhlke L, Engel ME, Lemmer CE, Van de Wall M, Nkepu S, Meiring A et al. The natural history of latent rheumatic heart disease in a 5 year follow-up study: a prospective observational study. BMC Cardiovasc Disord. 2016;16:46. doi: 10.1186/s1287 2-016-0225-3-3.

29. Saxena A, Ramakrishnan S, Roy A, Seth S, Krishnan A, Misra P et al. Prevalence and outcome of subclinical rheumatic heart disease in India: The RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart. 2011;97(24):2018–2022. doi: 0.1136/h eartjnl-2011-300792.

30. Engelman D, Wheaton GR, Mataika RL, Kado JH, Colquhoun SM, Remenyi Bet al. Screening-detected rheumatic heart disease can progress to severe disease. Heart Asia. 2016;8(2):67–73. doi:10.1136/heartasia-2016-010847.

31. Guilherme L, Cury P, Demarchi LM, Coelho V, Abel L, Lopez AP et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):158 3-159. doi:10.1016/S0002-440(10)63415-3.

32. Vasan RS, Shrivastava S, Vijayakumar M, Narang R, Lister BC, Narula J. Echocardiographic evaluation of patients with acute rheumatic fever and rheumatic carditis. Circulation. 1996;94(1):73-82. doi:10.1161/01 .cir.94.1.73.

33. Barlow JB, Marcus RH, Pocock WA, Barlow CW, Essop JB, Sareli Pl. Mechanisms and management of heart failure in active rheumatic carditis. S Afr Med J. 1990;78:181-186.

34. Vieira MLC, Branco CEdB, Gazola ASL, Vieira PPAC, Benvenuti LA, Demarchi LMMF et al. 3D echocardiography for rheumatic heart disease analysis: ready for prime time. Front. Cardiovasc. Med. 2021;8:676938. doi: 10.3389/fcvm.2021.676938.

35. Pandian NG, Kim JK, Arias-Godinez JA, Marx GR, Michelena HI, Chander Mohan J et al. Recommendations for the use of echocardiography in the evaluation of rheumatic heart disease: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2023;36(1):3-28. doi: 10.1016/j.echo.2022.10.009.

36. Webb RH, Culliford-Semmens N, Sidhu K et al. Normal echocardiographic mitral and aortic valve thickness in children. Heart Asia. 2017;9(1):70–75. doi:10.1136/heartasia-2016- 010872.