Metadichol® induced expression of Sirtuin family 1-7 in somatic and cancer cells
Main Article Content
Abstract
The Sirtuins 1-7 family and Klotho (KL), Forkhead box protein O1 (FOXO1), telomerase reverse transcriptase (TERT), tumor suppressor p53 (TP53) and growth differentiation factor 11 (GDF11) regulate aging, metabolism, and DNA repair and are involved in age-related diseases such as cancer, cardiovascular disease, and diabetes.
Seven sirtuin genes in humans encode seven sirtuin enzymes (SIRT1–7), each of which has unique functions and subcellular locations. Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that play a significant role in physiological processes such as energy metabolism, stress responses, DNA repair, and gene expression and are potential targets for age-related diseases such as type 2 diabetes, inflammatory diseases, and neurodegenerative disorders. They also play a role in cancer by regulating critical cellular processes such as DNA repair and energy metabolism. Other genes, such as Klotho (KL), Forkhead box protein O1 (FOXO1), telomerase reverse transcriptase (TERT), tumor suppressor p53 (TP53) and growth differentiation factor 11 (GDF11), also regulate aging, metabolism, and DNA repair and are involved in age-related diseases such as cancer, cardiovascular disease, and diabetes.
In addition, these proteins are closely related to sirtuins. A single molecule that can activate these five genes and sirtuin genes is challenging because each isoform has a unique structure, substrate, and regulatory mechanism. Most known sirtuin activators are specific for Sirtuin 1, the most studied isoform of the sirtuin family. This study was initiated based on previous work in which we showed that metadichol can express all nuclear receptors if it is possible to express all seven sirtuin families 1-7 using metadichol as a small molecule inducer. Herein, we report that at concentrations ranging from 1 pg/mL to 100 ng/mL, Metadichol®, a nanoemulsion of long-chain alcohols, induced the expression of the human Sirtuin 1-7 gene in dermal fibroblasts and a variety of cancer cells in a concentration-dependent manner and that KL, GDF11, telomerase, Foxo1 and P53 could have significant beneficial effects on mitigating age-related diseases. The results were quantified by using qRT‒PCR, and proteins were characterized using western blot techniques. The experimental procedure used is unique in that it did not involve the use of viruses or other gene insertion technique.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
Doi: 10.1038/s41392-022-01257-8
2. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther. 2018;188:140-154.
Doi: 10.1016/j.pharmthera.2018.03.004
3. Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016;8:61.
Doi: 10.1186/s13148-016-0224-3
4. Lu C, Zhao H, Liu Y, et al. Novel role of the SIRT1 in endocrine and metabolic diseases. Int J Biol Sci. 2023;19(2):484-501.
Doi: 10.7150/ijbs.78654
5. Jung TY, Jin GR, Koo YB, et al. Deacetylation by SIRT1 promotes the tumor-suppressive activity of HINT1 by enhancing its binding capacity for β-catenin or MITF in colon cancer and melanoma cells. Exp Mol Med. 2020;52(7):1075-1089.
Doi: 10.1038/s12276-020-0465-2
6. Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology associated disorders. Front Immunol. 2023;14: 1174180.
Doi: 10.3389/fimmu.2023.1174180
7. Ma C, Sun Y, Pi C, et al. SIRT3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2. Front Cell Dev Biol. 2020;8:599376.
Doi: 10.3389/fcell.2020.599376
8. Gertman O, Omer D, Hendler A, et al. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance. Sci Rep. 2018;8(1):3538. Doi: 10.1038/s41598-018-21887-9
9. Sharma A, Costantini S, Colonna G. The protein–protein interaction network of the human sirtuin family. Biochim Biophys Acta. 2013;1834(10):1998-2009.
Doi: 10.1016/j.bbapap.2013.06.012
10. Vassilopoulos A, Fritz KS, Petersen DR, Gius D. The human sirtuin family: evolutionary divergences and functions. Hum Genomics. 2011;5(5):485-496.
Doi: 10.1186/1479-7364-5-5-485
11. Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett. 2020;20(4):11. Doi: 10.3892/ol.2020.11872
12. Fernandez-Marcos PJ, Serrano M. SIRT4: the glutamine gatekeeper. Cancer Cell. 2013;23 (4):427-428. Doi: 10.1016/j.ccr.2013.04.003
13. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560-570.
Doi: 10.1016/j.cell.2009.02.026
14. Leeuwen IV, Lain S. Sirtuins and p53. Adv Cancer Res. 2009;102:171-195.
Doi: 10.1016/s0065-230x(09)02005-3
15. Amano H, Sahin E. Telomeres and sirtuins: at the end we meet again. Mol Cell Oncol. 2019;6(5):e1632613.
Doi: 10.1080/23723556.2019.1632613
16. Ullah M, Sun Z. Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol A Biol Sci Med Sci. 2019;74(9):1396-1407.
Doi: 10.1093/gerona/gly261
17. Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res. 2022;175: 106014.
Doi: 10.1016/j.phrs.2021.106014
18. Lee JT, Gu W. SIRT1: regulator of p53 deacetylation. Genes Cancer. 2013;4(3-4): 112-117.
Doi: 10.1177/1947601913484496
19. Rostamzadeh F, Moosavi-Saeed Y, Yeganeh-Hajahmadi M. Interaction of Klotho and sirtuins. Exp Gerontol. 2023;182:112306.
Doi: 10.1016/j.exger.2023.112306
20. Yeganeh-Hajahmadi M, Najafipour H, Rostamzadeh F, Naghibzadeh-Tahami A. Klotho and SIRT1 changes from prediabetes to diabetes and prehypertension to hypertension. Diabetol Metab Syndr. 2021;13(1):115. Doi: 10.1186/s13098-021-00736-2
21. Sasaki T, Kitamura T. Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr J. 2010;57(11):939-946.
Doi: 10.1507/endocrj.k10e-320
22. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107(12): 1470-1482.
Doi: 10.1161/CIRCRESAHA.110.227371
23. Hori YS, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One. 2013;8(9):e73875. Doi: 10.1371/journal.pone.0073875
24. Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005;16(2):237-243.
Doi: 10.3892/ijmm.16.2.237
25. Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res. 2020;126(4):439-452. Doi: 10.1161/CIRCRESAHA.119.315767
26. Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a mammalian deacylase with multitasking abilities. Physiol Rev. 2020;100(1):145-169. Doi: 10.1152/physrev.00030.2018
27. Chen J, Liu Z, Wang H, et al. SIRT6 enhances telomerase activity to protect against DNA damage and senescence in hypertrophic ligamentum flavum cells from lumbar spinal stenosis patients. Aging. 2021;13(4):6025-6040. Doi: 10.18632/aging.202536
28. Santos-Barriopedro I, Vaquero A. Complex role of SIRT6 in NF-κB pathway regulation. Mol Cell Oncol. 2018;5(4):e1445942.
Doi: 10.1080/23723556.2018.1445942
29. Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, et al. GDF11 implications in cancer biology and metabolism. Facts and controversies. Front Oncol. 2019;9:1039. Doi: 10.3389/fonc.2019.01039
30. Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer. 2023;1878(5):188944.
Doi: 10.1016/j.bbcan.2023.188944
31. Liu Y, Shao L, Chen K, et al. GDF11 restrains tumor growth by promoting apoptosis in pancreatic cancer. Onco Targets Ther. 2018;11:8371-8379.
Doi: 10.2147/OTT.S181792
32. Jamaiyar A, Wan W, Janota DM, Enrick MK, Chilian WM, Yin L. The versatility and paradox of GDF 11. Pharmacol Ther. 2017;175:28-34. Doi: 10.1016/j.pharmthera.2017.02.032
33. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187-17195.
Doi: 10.1074/jbc.m501250200
34. Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol. 2014;54:363-380. Doi: 10.1146/annurev-pharmtox-010611-134657
35. Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340-8351.
Doi: 10.1074/jbc.M109.088682
36. Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 activation by natural phytochemicals: an overview. Front Pharmacol. 2020;11:1225. Doi: 10.3389/fphar.2020.01225
37. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529-547. Doi: 10.1016/j.cmet.2018.02.011
38. Raghavan PR. US Patents: 8,722,093 (2014); 9,034,383 (2015); 9,006,292; 2015.
39. Raghavan PR. Metadichol; an agonist that expresses the anti-aging gene Klotho in various cell lines. Fortune J Health Sci. 2023;6(3):357-362. Doi: 10.26502/fjhs.135
40. Raghavan PR. The quest for immortality: Introducing Metadichol® a novel telomerase activator. Stem Cell Res Ther. 2019;9(1):446. Doi: 10.4172/2157-7633.1000446
41. Innovation Intelligence. https://www.elsevier.com/solutions/data-analytics
42. Kane AE, Sinclair DA. Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123(7): 868-885.
Doi: 10.1161/CIRCRESAHA.118.312498
43. Koh JH, Kim JY. Role of PGC-1α in the mitochondrial NAD(+) pool in metabolic diseases. Int J Mol Sci. 2021;22(9):4558. Doi: 10.3390/ijms22094558
44. Raghavan PR. Metadichol® a nano lipid emulsion that expresses all 49 nuclear receptors in stem and somatic cells. Arch Clin Biomed Res. 2023;7(5):543-555.
Doi: 10.26502/acbr.50170370
45. Wang X, Tang H, Chen Y, et al. Overexpression of SIRT3 disrupts mitochondrial proteostasis and cell cycle progression. Protein Cell. 2016;7(4):295-299. Doi: 10.1007/s13238-016-0251-z
46. Zhang B, Cui S, Bai X, et al. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age. 2013;35(6):2237-2253. Doi: 10.1007/s11357-013-9520-4
47. Qiu L, Yi S, Yu T, Hao Y. Sirt3 protects against thoracic aortic dissection formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of smooth muscle cells. Front Cardiovasc Med. 2021;8:675647.
Doi: 10.3389/fcvm.2021.675647
48. Yamauchi J, Kim DH, Henry Dong H. FoxO1. In: Choi S, ed. Encyclopedia of Signaling Molecules. Cham: Springer; 2018:1843-1854.
49. Raghavan PR. Umbilical cord cells treatment with Metadichol® IRS proteins and GLUT4 expression and implications for diabetes. J Stem Cell Res Ther. 2018;8(6):429.
Doi: 10.4172/2572-4126.1000429
50. Gross DN, van den Heuvel APJ, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27(16):2320-2336. Doi: 10.1038/onc.2008.25
51. Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018;193:124-131. Doi: 10.1016/j.lfs.2017.11.030
52. Kim ME, Kim DH, Lee JS. FoxO transcription factors: applicability as a novel immune cell regulators and therapeutic targets in oxidative stress-related diseases. Int J Mol Sci. 2022;23(19):11877.
Doi: 10.3390/ijms231911877
53. Shi L, Tao Z, Cheng Z. Assessing the activity of transcription factor FoxO1. Methods Mol Biol. 2022;2594:97-106. Doi: 10.1007/978-1-0716-2815-7_8
54. Iwahara N, Hisahara S, Hayashi T, Horio Y. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX. Biochem Biophys Res Commun. 2009;386 (4):671-675.
Doi: 10.1016/j.bbrc.2009.06.103
55. Dierickx P, Zhu K, Carpenter BJ, et al. Circadian REV-ERBs repress E4 bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat Cardiovasc Res. 2022;1(1):45-58. Doi: 10.1038/s44161-021-00001-9
56. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28(1):91-106.
Doi: 10.1016/j.molcel.2007.07.032
57. Bian C, Zhang H, Gao J, et al. SIRT6 regulates SREBP1c-induced glucolipid metabolism in liver and pancreas via the AMPKα-mTORC1 pathway. Lab Invest. 2022;102(5):474-484. Doi: 10.1038/s41374-021-00715-1
58. Karpova T, Ravichandiran K, Insisienmay L, Rice D, Agbor V, Heckert LL. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice. Biol Reprod. 2015;93(4):83-83.
Doi: 10.1095/biolreprod.115.131193
59. Khawar MB, Liu C, Gao F, et al. Sirt1 regulates testosterone biosynthesis in Leydig cells by modulating autophagy. Protein Cell. 2021;12 (1):67-75. Doi: 10.1007/s13238-020-00771-1
60. Wang C, Powell MJ, Popov VM, Pestell RG. Acetylation in nuclear receptor signaling and the role of sirtuins. Mol Endocrinol. 2008;22(3):539-545.
Doi: 10.1210/me.2007-0379
61. Hayashida S, Arimoto A, Kuramoto Y, et al. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARα in mice. Mol Cell Biochem. 2010;339(1-2):285-292.
Doi: 10.1007/s11010-010-0391-z
62. Satterstrom FK, Swindell WR, Laurent G, Vyas S, Bulyk ML, Haigis MC. Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell. 2015;14(5):818-825.
Doi: 10.1111/acel.12360
63. Cordeiro A, de Souza LL, Oliveira LS, et al. Thyroid hormone regulation of sirtuin 1 expression and implications to integrated responses in fasted mice. J Endocrinol. 2013;216(2):181-193. Doi: 10.1530/joe-12-0420
64. Yao L, Wang Y. Bioinformatic analysis of the effect of the sirtuin family on differentiated thyroid carcinoma. Biomed Res Int. 2022;2022:5794118.
Doi: 10.1155/2022/5794118
65. Wärnmark A, Treuter E, Wright APH, Gustafsson JAK. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 2003;17(10):1901-1909.
Doi: 10.1210/me.2002-0384
66. Raghavan PR. Metadichol® a novel inverse agonist of thyroid receptor and its applications in thyroid diseases. Biol Med. 2019;11(2):458. Doi: 10.35248/0974-8369.19.11.458.
67. Tan A, Doig CL. NAD(+) degrading enzymes, evidence for roles during infection. Front Mol Biosci. 2021;8:697359.
Doi: 10.3389/fmolb.2021.697359
68. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio—the analysis and navigation of molecular networks. Bioinformatics. 2003;19(16):2155-2157.
Doi: 10.1093/bioinformatics/btg290.
69. Sivachenko AY, Yuryev A, Daraselia N, Mazo I. Molecular networks in microarray analysis. J Bioinform Comput Biol. 2007;5(2b):429-456. Doi: 10.1142/s0219720007002795.
70. Tomczak A, Mortensen JM, Winnenburg R, et al. Interpretation of biological experiments changes with evolution of the gene ontology and its annotations. Sci Rep. 2018;8(1):5115-. Doi: 10.1038/s41598-018-23395-2
71. Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 2016;35(1):182. Doi: 10.1186/s13046-016-0461-5
72. Hamaidi I, Kim S. Sirtuins are crucial regulators of T-cell metabolism and functions. Exp Mol Med. 2022;54(3):207-215.
Doi: 10.1038/s12276-022-00739-7
73. Xiong L, Tan B, Lei X, et al. SIRT6 through PI3K/Akt/mTOR signaling pathway to enhance radiosensitivity of non‐small cell lung cancer and inhibit tumor progression. IUBMB Life. 2021;73(9):1092-1102.
Doi: 10.1002/iub.2511
74. Yang J, Li Y, Zhang Y, et al. Sirt6 promotes tumorigenesis and drug resistance of diffuse large B-cell lymphoma by mediating PI3K/Akt signaling. J Exp Clin Cancer Res. 2020;39(1):142. Doi: 10.1186/s13046-020-01623-w.
75. Duan W. Targeting sirtuin-1 in Huntington's disease: rationale and current status. CNS Drugs. 2013;27(5):345-352.
Doi: 10.1007/s40263-013-0055-0
76. Kahyo T, Mostoslavsky R, Goto M, Setou M. Sirtuin‐mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett. 2008;582(17):2479-2483.
Doi: 10.1016/j.febslet.2008.06.031.
77. Khawar MB, Sohail AM, Li W. SIRT1: a key player in male reproduction. Life. 2022;12(2):318. Doi: 10.3390/life12020318
78. Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017;42(3):876-890. Doi: 10.1007/s11064-016-2110-y
79. Yan J, Tang X, Zhou Z-Q, et al. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol. 2022;13:886087.
Doi: 10.3389/fphys.2022.886087
80. Zhang XY, Li W, Zhang JR, Li CY, Zhang J, Lv XJ. Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res. 2022;23(1):66. Doi: 10.1186/s12931-022-01986-y
81. Zhao X, Xue X, Wang C, Wang J, Peng C, Li Y. Emerging roles of sirtuins in alleviating alcoholic liver disease: a comprehensive review. Int Immunopharmacol. 2022;108:108712.
Doi: 10.1016/j.intimp.2022.108712
82. He Q, Chen K, Ye R, Dai N, Guo P, Wang L. Associations of sirtuins with clinicopathological variables and prognosis in human ovarian cancer. Oncol Lett. 2020;19(4):3278-3288. Doi: 10.3892/ol.2020.11432
83. Morohashi K-I, Inoue M, Baba T. Coordination of multiple cellular processes by NR5A1/Nr5a1. Endocrinol Metab (Seoul). 2020;35(4):756-764.
Doi: 10.3803/EnM.2020.402
84. Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest. 2013;123(3):973-979.
Doi: 10.1172/JCI64094
85. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21(6):349-353.
Doi: 10.1016/j.semcancer.2011.10.001
86. Torbus-Paluszczak M, Bartman W, Adamczyk-Sowa M. Klotho protein in neurodegenerative disorders. Neurol Sci. 2018;39(10):1677-1682. Doi: 10.1007/s10072-018-3496-x
87. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309(9):H1375-H1389.
Doi: 10.1152/ajpheart.00053.2015
88. Kuro-o M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2018;15(1):27-44. Doi: 10.1038/s41581-018-0078-3
89. Ma X, Su P, Yin C, et al. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci. 2020;21(3):692. Doi: 10.3390/ijms21030692
90. Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE. Sirtuins link inflammation and metabolism. J Immunol Res. 2016;2016: 8167273. Doi: 10.1155/2016/8167273
91. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24-34.
Doi: 10.5483/BMBRep.2019.52.1.290
92. Delpoux A, Marcel N, Hess Michelini R, et al. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 2021;34(4):108674.
Doi: 10.1016/j.celrep.2020.108674
93. Trybek T, Kowalik A, Góźdź S, Kowalska A. Telomeres and telomerase in oncogenesis. Oncol Lett. 2020;20(2):1015-1027.
Doi: 10.3892/ol.2020.11659
94. Lupatov AY, Yarygin KN. Telomeres and telomerase in the control of stem cells. Biomedicines. 2022;10(10):2335.
Doi: 10.3390/biomedicines10102335
95. García-Prat L, Perdiguero E, Alonso-Martín S, et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat Cell Biol. 2020;22(11):1307-1318.
Doi: 10.1038/s41556-020-00593-7
96. Font-Díaz J, Jiménez-Panizo A, Caelles C, et al. Nuclear receptors: lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol. 2021;73:58-75. Doi: 10.1016/j.semcancer.2020.12.007
97. Kanbay M, Copur S, Ozbek L, et al. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J. 2024;17(1):sfad276.
Doi: 10.1093/ckj/sfad276
98. Elmore LW, Norris MW, Sircar S, et al. Upregulation of telomerase function during tissue regeneration. Exp Biol Med. 2008;233(8):958-967. Doi: 10.3181/0712-rm-345
99. Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2013;71(9):1657-1671. Doi: 10.1007/s00018-013-1513-z
100. Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927-945. Doi: 10.14336/AD.2019.0820
101. Cai W, Zhou W, Han Z, et al. Master regulator genes and their impact on major diseases. PeerJ. 2020;8:e9952.
Doi: 10.7717/peerj.9952
102. Samardzija C, Greening DW, Escalona R, et al. Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodeling. Sci Rep. 2017;7:46312.
Doi: 10.1038/srep46312
103. Raghavan R P. Metadichol® induced the expression of neuronal transcription factors in human fibroblast dermal cells. J Bioinform Syst Biol. 2023;6(4):298-311.
Doi: 10.26502/jbsb.5107066
104. Raghavan PR. Metadichol, a natural ligand for the expression of Yamanaka reprogramming factors in somatic and primary cancer cell lines. 2022. Doi: 10.21203/rs.3.rs-1727437/v4
105. Raghavan PR. Metadichol treatment of fibroblasts and embryonic stem cells regulates key cardiac progenitors. Cardiol Cardiovasc Med. 2023;7(4):322-330.
Doi: 10.26502/fccm.92920340
106. Raghavan PR. A multi gene targeting approach to treating liver diseases with metadichol®. J Cytokine Biol. 2018;3(2):126. Doi: 10.4172/2576-3881.1000126
107. Aleman C, Mas R, Hernandez C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87.
Doi: 10.1016/0378-4274(94)90147-3
108. Alemán CL, Ferreiro RM, Puig MN, Guerra IR, Ortega CH, Capote A. Carcinogenicity of policosanol in Sprague Dawley rats: a 24 month study. Teratog Carcinog Mutagen. 1994;14(5):239-249.
Doi: 10.1002/tcm.1770140505
109. Alemán CL, Puig MN, Elias EC, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573-578.
Doi: 10.1016/0278-6915(95)00026-x