The physiological roles of ER stress transducer BBF2H7/CREB3L2 and its potential as a target of disease therapy

Main Article Content

Koji Matsuhisa Atsushi Saito Rie Asada Soshi Kanemoto Masayuki Kaneko Kazunori Imaizumi

Abstract

BBF2H7 is an endoplasmic reticulum (ER)-resident transmembrane transcription factor, that is cleaved at the transmembrane region in response to physiological and pathophysiological ER stress to generate two fragments; the cytoplasmic N-terminal fragment containing transcription activation and basic leucine zipper (bZIP) domains translocates into the nucleus to act as a transcription factor. Conversely, the luminal C-terminal fragment is extracellularly secreted and promotes the proliferation of neighboring cells via activation of hedgehog (Hh) signaling. In developing cartilage, the dual N- and C-terminal functions of BBF2H7 enable chondrocytes to simultaneously orchestrate distinct cellular events for differentiation and proliferation via the activation of the secretory pathway by the N-terminus and the Hh signaling by the C-terminus. Interestingly, the secreted BBF2H7 C-terminus is involved in cancer cell proliferation by the activation of Hh signaling, which is well known to facilitate tumorigenesis. In this review, we summarize the biological roles of BBF2H7 in developing cartilage and cancer cells, and discuss the potential of BBF2H7 as a novel target for cancer therapy.

Article Details

How to Cite
MATSUHISA, Koji et al. The physiological roles of ER stress transducer BBF2H7/CREB3L2 and its potential as a target of disease therapy. Medical Research Archives, [S.l.], n. 3, aug. 2016. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/536>. Date accessed: 23 nov. 2024.
Keywords
BBF2H7; endoplasmic reticulum stress; unfolded protein response; chondrogenesis; hedgehog signaling; cell proliferation; cancer treatment
Section
Review Articles

References

Adham, I. M., Eck, T. J., Mierau, K., Muller, N., Sallam, M. A., Paprotta, I., . . . Engel, W. (2005). Reduction of spermatogenesis but not fertility in Creb3l4-deficient mice. Mol Cell Biol, 25(17), 7657-7664. doi:10.1128/mcb.25.17.7657-7664.2005

Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060), 894-897. doi:10.1038/nature03994

Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev, 16(21), 2813-2828. doi:10.1101/gad.1017802

Asada, R., Saito, A., Kawasaki, N., Kanemoto, S., Iwamoto, H., Oki, M., . . . Imaizumi, K. (2012). The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J Biol Chem, 287(11), 8144-8153. doi:10.1074/jbc.M111.332593

Bailey, D., & O'Hare, P. (2007). Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal, 9(12), 2305-2321. doi:10.1089/ars.2007.1796

Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., . . . Beachy, P. A. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297(5586), 1559-1561. doi:10.1126/science.1073733

Bhardwaj, G., Murdoch, B., Wu, D., Baker, D. P., Williams, K. P., Chadwick, K., . . . Bhatia, M. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2(2), 172-180. doi:10.1038/84282

Brown, J. M., & Giaccia, A. J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res, 58(7), 1408-1416.

Cao, G., Ni, X., Jiang, M., Ma, Y., Cheng, H., Guo, L., . . . Mao, Y. (2002). Molecular cloning and characterization of a novel human cAMP response element-binding ( CREB) gene ( CREB4). J Hum Genet, 47(7), 373-376. doi:10.1007/s100380200053

Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int J Cancer, 133(1), 225-234. doi:10.1002/ijc.28006

Chen, Q., Xu, R., Zeng, C., Lu, Q., Huang, D., Shi, C., . . . Luo, S. (2014). Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin beta4-mediated FAK signaling. PLoS One, 9(2), e88386. doi:10.1371/journal.pone.0088386

Chung, U. I., Schipani, E., McMahon, A. P., & Kronenberg, H. M. (2001). Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest, 107(3), 295-304. doi:10.1172/jci11706

Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I., & Ruiz i Altaba, A. (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol, 17(2), 165-172. doi:10.1016/j.cub.2006.11.033

Coon, V., Laukert, T., Pedone, C. A., Laterra, J., Kim, K. J., & Fults, D. W. (2010). Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther, 9(9), 2627-2636. doi:10.1158/1535-7163.mct-10-0486

Dahmane, N., Sanchez, P., Gitton, Y., Palma, V., Sun, T., Beyna, M., . . . Ruiz i Altaba, A. (2001). The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development, 128(24), 5201-5212.

Deckelbaum, R. A., Chan, G., Miao, D., Goltzman, D., & Karaplis, A. C. (2002). Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA. J Cell Sci, 115(Pt 14), 3015-3025.

DenBoer, L. M., Hardy-Smith, P. W., Hogan, M. R., Cockram, G. P., Audas, T. E., & Lu, R. (2005). Luman is capable of binding and activating transcription from the unfolded protein response element. Biochem Biophys Res Commun, 331(1), 113-119. doi:10.1016/j.bbrc.2005.03.141

Denef, N., Neubuser, D., Perez, L., & Cohen, S. M. (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4), 521-531.

Dierks, C., Beigi, R., Guo, G. R., Zirlik, K., Stegert, M. R., Manley, P., . . . Warmuth, M. (2008). Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell, 14(3), 238-249. doi:10.1016/j.ccr.2008.08.003

Duman-Scheel, M., Weng, L., Xin, S., & Du, W. (2002). Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature, 417(6886), 299-304. doi:10.1038/417299a

Eleveld-Trancikova, D., Sanecka, A., van Hout-Kuijer, M. A., Looman, M. W., Hendriks, I. A., Jansen, B. J., & Adema, G. J. (2010). DC-STAMP interacts with ER-resident transcription factor LUMAN which becomes activated during DC maturation. Mol Immunol, 47(11-12), 1963-1973. doi:10.1016/j.molimm.2010.04.019

Flemban, A., & Qualtrough, D. (2015). The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis. Cancers (Basel), 7(3), 1863-1884. doi:10.3390/cancers7030866

Fromme, J. C., Orci, L., & Schekman, R. (2008). Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol, 18(7), 330-336. doi:10.1016/j.tcb.2008.04.006

Gonnissen, A., Isebaert, S., & Haustermans, K. (2015). Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget, 6(16), 13899-13913. doi:10.18632/oncotarget.4224

Hanna, A., & Shevde, L. A. (2016). Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer, 15, 24. doi:10.1186/s12943-016-0509-3

Harding, H. P., Zhang, Y., & Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716), 271-274. doi:10.1038/16729

Hetz, C., Chevet, E., & Harding, H. P. (2013). Targeting the unfolded protein response in disease. Nat Rev Drug Discov, 12(9), 703-719. doi:10.1038/nrd3976

Hino, K., Saito, A., Kido, M., Kanemoto, S., Asada, R., Takai, T., . . . Imaizumi, K. (2014). Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem, 289(20), 13810-13820. doi:10.1074/jbc.M113.543322

Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 15(23), 3059-3087. doi:10.1101/gad.938601

Iwakoshi, N. N., Lee, A. H., Vallabhajosyula, P., Otipoby, K. L., Rajewsky, K., & Glimcher, L. H. (2003). Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol, 4(4), 321-329. doi:10.1038/ni907

Iwamoto, H., Matsuhisa, K., Saito, A., Kanemoto, S., Asada, R., Hino, K., . . . Imaizumi, K. (2015). Promotion of Cancer Cell Proliferation by Cleaved and Secreted Luminal Domains of ER Stress Transducer BBF2H7. PLoS One, 10(5), e0125982. doi:10.1371/journal.pone.0125982

Johnson, R. L., Rothman, A. L., Xie, J., Goodrich, L. V., Bare, J. W., Bonifas, J. M., . . . Scott, M. P. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science, 272(5268), 1668-1671.

Kanemoto, S., Kobayashi, Y., Yamashita, T., Miyamoto, T., Cui, M., Asada, R., . . . Imaizumi, K. (2015). Luman is involved in osteoclastogenesis through the regulation of DC-STAMP expression, stability and localization. J Cell Sci, 128(23), 4353-4365. doi:10.1242/jcs.176057

Katoh, Y., & Katoh, M. (2009). Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med, 9(7), 873-886.

Kaufman, R. J. (2002). Orchestrating the unfolded protein response in health and disease. J Clin Invest, 110(10), 1389-1398. doi:10.1172/jci16886

Kim, J. E., Kim, H., Choe, J. Y., Sun, P., Jheon, S., & Chung, J. H. (2013). High expression of Sonic hedgehog signaling proteins is related to the favorable outcome, EGFR mutation, and lepidic predominant subtype in primary lung adenocarcinoma. Ann Surg Oncol, 20 Suppl 3, S570-576. doi:10.1245/s10434-013-3022-6

Kinzler, K. W., Bigner, S. H., Bigner, D. D., Trent, J. M., Law, M. L., O'Brien, S. J., . . . Vogelstein, B. (1987). Identification of an amplified, highly expressed gene in a human glioma. Science, 236(4797), 70-73.

Kondo, S., Hino, S. I., Saito, A., Kanemoto, S., Kawasaki, N., Asada, R., . . . Imaizumi, K. (2012). Activation of OASIS family, ER stress transducers, is dependent on its stabilization. Cell Death Differ, 19(12), 1939-1949. doi:10.1038/cdd.2012.77

Kondo, S., Murakami, T., Tatsumi, K., Ogata, M., Kanemoto, S., Otori, K., . . . Imaizumi, K. (2005). OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol, 7(2), 186-194. doi:10.1038/ncb1213

Kondo, S., Saito, A., Hino, S., Murakami, T., Ogata, M., Kanemoto, S., . . . Imaizumi, K. (2007). BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol, 27(5), 1716-1729. doi:10.1128/mcb.01552-06

Kronenberg, H. M. (2003). Developmental regulation of the growth plate. Nature, 423(6937), 332-336. doi:10.1038/nature01657

Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., . . . Katano, M. (2004). Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res, 64(17), 6071-6074. doi:10.1158/0008-5472.can-04-0416

Lauth, M., Bergstrom, A., Shimokawa, T., & Toftgard, R. (2007). Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A, 104(20), 8455-8460. doi:10.1073/pnas.0609699104

Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., . . . Wicha, M. S. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res, 66(12), 6063-6071. doi:10.1158/0008-5472.can-06-0054

Liu, Y., May, N. R., & Fan, C. M. (2001). Growth arrest specific gene 1 is a positive growth regulator for the cerebellum. Dev Biol, 236(1), 30-45. doi:10.1006/dbio.2000.0146

Louro, I. D., Bailey, E. C., Li, X., South, L. S., McKie-Bell, P. R., Yoder, B. K., . . . Ruppert, J. M. (2002). Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res, 62(20), 5867-5873.

Lu, R., Yang, P., O'Hare, P., & Misra, V. (1997). Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol Cell Biol, 17(9), 5117-5126.

Marada, S., Stewart, D. P., Bodeen, W. J., Han, Y. G., & Ogden, S. K. (2013). The unfolded protein response selectively targets active smoothened mutants. Mol Cell Biol, 33(12), 2375-2387. doi:10.1128/mcb.01445-12

Metcalfe, C., & de Sauvage, F. J. (2011). Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res, 71(15), 5057-5061. doi:10.1158/0008-5472.can-11-0923

Murakami, T., Saito, A., Hino, S., Kondo, S., Kanemoto, S., Chihara, K., . . . Imaizumi, K. (2009). Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol, 11(10), 1205-1211. doi:10.1038/ncb1963

Nagamori, I., Yabuta, N., Fujii, T., Tanaka, H., Yomogida, K., Nishimune, Y., & Nojima, H. (2005). Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells, 10(6), 575-594. doi:10.1111/j.1365-2443.2005.00860.x

Nakamura, M., Kubo, M., Yanai, K., Mikami, Y., Ikebe, M., Nagai, S., . . . Katano, M. (2007). Anti-patched-1 antibodies suppress hedgehog signaling pathway and pancreatic cancer proliferation. Anticancer Res, 27(6a), 3743-3747.

Omori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., . . . Sugano, S. (2001). CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res, 29(10), 2154-2162.

Oro, A. E., Higgins, K. M., Hu, Z., Bonifas, J. M., Epstein, E. H., Jr., & Scott, M. P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 276(5313), 817-821.

Paccaud, J. P., Reith, W., Carpentier, J. L., Ravazzola, M., Amherdt, M., Schekman, R., & Orci, L. (1996). Cloning and functional characterization of mammalian homologues of the COPII component Sec23. Mol Biol Cell, 7(10), 1535-1546.

Pasca di Magliano, M., & Hebrok, M. (2003). Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer, 3(12), 903-911. doi:10.1038/nrc1229

Pritchett, J., Athwal, V., Roberts, N., Hanley, N. A., & Hanley, K. P. (2011). Understanding the role of SOX9 in acquired diseases: lessons from development. Trends Mol Med, 17(3), 166-174. doi:10.1016/j.molmed.2010.12.001

Reimold, A. M., Iwakoshi, N. N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E. M., . . . Glimcher, L. H. (2001). Plasma cell differentiation requires the transcription factor XBP-1. Nature, 412(6844), 300-307. doi:10.1038/35085509

Rimkus, T. K., Carpenter, R. L., Qasem, S., Chan, M., & Lo, H. W. (2016). Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers (Basel), 8(2). doi:10.3390/cancers8020022

Robarge, K. D., Brunton, S. A., Castanedo, G. M., Cui, Y., Dina, M. S., Goldsmith, R., . . . Xie, M. (2009). GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett, 19(19), 5576-5581. doi:10.1016/j.bmcl.2009.08.049

Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. J Clin Invest, 110(10), 1383-1388. doi:10.1172/jci16784

Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 8(7), 519-529. doi:10.1038/nrm2199

Ruiz i Altaba, A. (1998). Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development, 125(12), 2203-2212.

Saito, A., Hino, S., Murakami, T., Kanemoto, S., Kondo, S., Saitoh, M., . . . Imaizumi, K. (2009). Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol, 11(10), 1197-1204. doi:10.1038/ncb1962

Saito, A., Kanemoto, S., Kawasaki, N., Asada, R., Iwamoto, H., Oki, M., . . . Imaizumi, K. (2012). Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat Commun, 3, 967. doi:10.1038/ncomms1971

Saito, A., Kanemoto, S., Zhang, Y., Asada, R., Hino, K., & Imaizumi, K. (2014). Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol Cell, 53(1), 127-139. doi:10.1016/j.molcel.2013.11.008

Sanchez, P., Hernandez, A. M., Stecca, B., Kahler, A. J., DeGueme, A. M., Barrett, A., . . . Ruiz i Altaba, A. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A, 101(34), 12561-12566. doi:10.1073/pnas.0404956101

Scales, S. J., & de Sauvage, F. J. (2009). Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci, 30(6), 303-312. doi:10.1016/j.tips.2009.03.007

Sekulic, A., Migden, M. R., Oro, A. E., Dirix, L., Lewis, K. D., Hainsworth, J. D., . . . Hauschild, A. (2012). Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med, 366(23), 2171-2179. doi:10.1056/NEJMoa1113713

Shahi, M. H., Holt, R., & Rebhun, R. B. (2014). Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells. PLoS One, 9(5), e96593. doi:10.1371/journal.pone.0096593

Sheng, Z., Li, L., Zhu, L. J., Smith, T. W., Demers, A., Ross, A. H., . . . Green, M. R. (2010). A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat Med, 16(6), 671-677. doi:10.1038/nm.2158

Srivastava, R. K., Kaylani, S. Z., Edrees, N., Li, C., Talwelkar, S. S., Xu, J., . . . Athar, M. (2014). GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget, 5(23), 12151-12165. doi:10.18632/oncotarget.2569

Stirling, J., & O'Hare, P. (2006). CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell, 17(1), 413-426. doi:10.1091/mbc.E05-06-0500

Stolt, C. C., Lommes, P., Sock, E., Chaboissier, M. C., Schedl, A., & Wegner, M. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev, 17(13), 1677-1689. doi:10.1101/gad.259003

Storlazzi, C. T., Mertens, F., Nascimento, A., Isaksson, M., Wejde, J., Brosjo, O., . . . Panagopoulos, I. (2003). Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet, 12(18), 2349-2358. doi:10.1093/hmg/ddg237

Tao, Y., Mao, J., Zhang, Q., & Li, L. (2011). Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol Lett, 2(5), 995-1001. doi:10.3892/ol.2011.357

Tenzen, T., Allen, B. L., Cole, F., Kang, J. S., Krauss, R. S., & McMahon, A. P. (2006). The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell, 10(5), 647-656. doi:10.1016/j.devcel.2006.04.004

Tirasophon, W., Welihinda, A. A., & Kaufman, R. J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev, 12(12), 1812-1824.

Varjosalo, M., & Taipale, J. (2008). Hedgehog: functions and mechanisms. Genes Dev, 22(18), 2454-2472. doi:10.1101/gad.1693608

Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., & Tabin, C. J. (1996). Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 273(5275), 613-622.

Wang, L., He, S., Yuan, J., Mao, X., Cao, Y., Zong, J., . . . Zhang, Y. (2012). Oncogenic role of SOX9 expression in human malignant glioma. Med Oncol, 29(5), 3484-3490. doi:10.1007/s12032-012-0267-z

Wang, M., & Kaufman, R. J. (2014). The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer, 14(9), 581-597. doi:10.1038/nrc3800

Wang, S., & Kaufman, R. J. (2012). The impact of the unfolded protein response on human disease. J Cell Biol, 197(7), 857-867. doi:10.1083/jcb.201110131

Wickstrom, M., Dyberg, C., Shimokawa, T., Milosevic, J., Baryawno, N., Fuskevag, O. M., . . . Johnsen, J. I. (2013). Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int J Cancer, 132(7), 1516-1524. doi:10.1002/ijc.27820

Xie, J., Murone, M., Luoh, S. M., Ryan, A., Gu, Q., Zhang, C., . . . de Sauvage, F. J. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90-92. doi:10.1038/34201

Yamaguchi, A., Hori, O., Stern, D. M., Hartmann, E., Ogawa, S., & Tohyama, M. (1999). Stress-associated endoplasmic reticulum protein 1 (SERP1)/Ribosome-associated membrane protein 4 (RAMP4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. J Cell Biol, 147(6), 1195-1204.

Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., & Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol, 20(18), 6755-6767.

Zhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D. T., . . . Kaufman, R. J. (2006). Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 124(3), 587-599. doi:10.1016/j.cell.2005.11.040